Structure-based designing efficient peptides based on p53 binding site residues to disrupt p53-MDM2/X interaction
MDM2 and MDMX are known as overexpressed oncoproteins in several wild-type p53 cancer cells. The development of potent and dual antagonist peptides for p53-MDM2/X is a continuous challenge. In this study, we intended to investigate the pivotal structural points respecting the development of potent a...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 11449 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | MDM2 and MDMX are known as overexpressed oncoproteins in several wild-type p53 cancer cells. The development of potent and dual antagonist peptides for p53-MDM2/X is a continuous challenge. In this study, we intended to investigate the pivotal structural points respecting the development of potent and dual inhibitors of MDM2/X. Correspondingly, MD simulation was performed on the experimentally confirmed peptides, comprising p53, pDI, pDIQ, PMI, and computationally screened mutant pDI and pDIQ. A follow-up secondary structure analysis showed the last three C-terminal residues provide the helicity reservation of peptides bound to MDM2/X. Furthermore, a delicate residue-residue examination displayed Met 11 and Ser12 in the modified peptides contribute significantly to dual inhibition of MDM2/X. Additionally, the peptides_MDM2/X complexes’ ΔG
binding
extracted by the umbrella sampling method were in agreement with the pattern of their experimental affinity values. It was concluded the screened pDI mutants were considered as suitable anti-MDM2/X peptides, and the data obtained could be exploited as the theoretical structure-based guide for rational peptide design. Taking account of results, the suitable C-terminal residues of p53-based peptides especially Met11, and Ser12, as well as higher umbrella sampling, generated ΔG
binding
to MDM2/X would be considered as the positive structural markers of a promising anti-cancer agent. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-67510-8 |