Mitochondrial and peroxisomal targeting of 2-methylacyl-CoA racemase in humans

2-Methylacyl-CoA racemase is an auxiliary enzyme required for the peroxisomal beta-oxidative breakdown of (2R)-pristanic acid and the (25R)-isomer of C(27) bile acid intermediates. The enzyme activity is found not only in peroxisomes but also is present in mitochondria of human liver and fibroblasts...

Full description

Saved in:
Bibliographic Details
Published inJournal of lipid research Vol. 41; no. 11; pp. 1752 - 1759
Main Authors Amery, L, Fransen, M, De Nys, K, Mannaerts, G P, Van Veldhoven, P P
Format Journal Article
LanguageEnglish
Published United States Elsevier 01.11.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:2-Methylacyl-CoA racemase is an auxiliary enzyme required for the peroxisomal beta-oxidative breakdown of (2R)-pristanic acid and the (25R)-isomer of C(27) bile acid intermediates. The enzyme activity is found not only in peroxisomes but also is present in mitochondria of human liver and fibroblasts. The C terminus of the human racemase, a protein of 382 amino acids with a molecular mass of 43,304 daltons as deduced from its cloned cDNA, consists of KASL. Hitherto this sequence has not been recognized as a peroxisomal targeting signal (PTS1). From the in vitro interaction between recombinant racemase and recombinant human PTS1 receptor (Pex5p), and the peroxisomal localization of green fluorescent protein (GFP) fused to the N terminus of full-length racemase or its last six amino acids in tranfected Chinese hamster ovary (CHO) cells, we concluded that ASL is a new PTS1 variant. To be recognized by Pex5p, however, the preceding lysine residue is critical. As shown in another series of transfection experiments with GFP fused to the C terminus of the full-length racemase or racemase with deletions of the N terminus, mitochondrial targeting information is localized between amino acids 22 and 85.Hence, our data show that a single transcript gives rise to a racemase protein containing two topogenic signals, explaining the dual cellular localization of the activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2275
DOI:10.1016/s0022-2275(20)31968-4