Short-term wind power forecasting through stacked and bi directional LSTM techniques

Computational intelligence (CI) based prediction models increase the efficient and effective utilization of resources for wind prediction. However, the traditional recurrent neural networks (RNN) are difficult to train on data having long-term temporal dependencies, thus susceptible to an inherent p...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e1949
Main Authors Ali Khan, Mehmood, Khan, Iftikhar Ahmed, Shah, Sajid, EL-Affendi, Mohammed, Jadoon, Waqas
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 29.03.2024
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Computational intelligence (CI) based prediction models increase the efficient and effective utilization of resources for wind prediction. However, the traditional recurrent neural networks (RNN) are difficult to train on data having long-term temporal dependencies, thus susceptible to an inherent problem of vanishing gradient. This work proposed a method based on an advanced version of RNN known as long short-term memory (LSTM) architecture, which updates recurrent weights to overcome the vanishing gradient problem. This, in turn, improves training performance. The RNN model is developed based on stack LSTM and bidirectional LSTM. The parameters like mean absolute error (MAE), standard deviation error (SDE), and root mean squared error (RMSE) are utilized as performance measures for comparison with recent state-of-the-art techniques. Results showed that the proposed technique outperformed the existing techniques in terms of RMSE and MAE against all the used wind farm datasets. Whereas, a reduction in SDE is observed for larger wind farm datasets. The proposed RNN approach performed better than the existing models despite fewer parameters. In addition, the approach requires minimum processing power to achieve compatible results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.1949