Reappraisal of the anatomical landmarks of motor and premotor cortical regions for image-guided brain navigation in TMS practice

Image‐guided navigation systems dedicated to transcranial magnetic stimulation (TMS) have been recently developed and offer the possibility to visualize directly the anatomical structure to be stimulated. Performing navigated TMS requires a perfect knowledge of cortical anatomy, which is very variab...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 35; no. 5; pp. 2435 - 2447
Main Authors Ahdab, Rechdi, Ayache, Samar S., Farhat, Wassim H., Mylius, Veit, Schmidt, Sein, Brugières, Pierre, Lefaucheur, Jean-Pascal
Format Journal Article
LanguageEnglish
Published New York, NY Blackwell Publishing Ltd 01.05.2014
Wiley-Liss
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Image‐guided navigation systems dedicated to transcranial magnetic stimulation (TMS) have been recently developed and offer the possibility to visualize directly the anatomical structure to be stimulated. Performing navigated TMS requires a perfect knowledge of cortical anatomy, which is very variable between subjects. This study aimed at providing a detailed description of sulcal and gyral anatomy of motor cortical regions with special interest to the inter‐individual variability of sulci. We attempted to identify the most stable structures, which can serve as anatomical landmarks for motor cortex mapping in navigated TMS practice. We analyzed the 3D reconstruction of 50 consecutive healthy adult brains (100 hemispheres). Different variants were identified regarding sulcal morphology, but several anatomical structures were found to be remarkably stable (four on dorsoventral axis and five on rostrocaudal axis). These landmarks were used to define a grid of 12 squares, which covered motor cortical regions. This grid was used to perform motor cortical mapping with navigated TMS in 12 healthy subjects from our cohort. The stereotactic coordinates (x‐y‐z) of the center of each of the 12 squares of the mapping grid were expressed into the standard Talairach space to determine the corresponding functional areas. We found that the regions whose stimulation produced almost constantly motor evoked potentials mainly correspond to the primary motor cortex, with rostral extension to premotor cortex and caudal extension to posterior parietal cortex. Our anatomy‐based approach should facilitate the expression and the comparison of the results obtained in motor mapping studies using navigated TMS. Hum Brain Mapp 35:2435–2447, 2014. © 2013 Wiley Periodicals, Inc.
Bibliography:ArticleID:HBM22339
istex:1EDA180A96170320943927F6B4C4938AC91C470D
ark:/67375/WNG-BMGFMDBZ-H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1065-9471
1097-0193
1097-0193
DOI:10.1002/hbm.22339