Fabrication and adhesion of a bio-inspired microarray: capillarity-induced casting using porous silicon mold

Inspired by the setal microstructure found on the gecko's toe-pads, a highly dense array of high-aspect-ratio (HAR) artificial setae has been developed with a novel mold-casting technique using a porous silicon (PSi) template. To overcome the high fluid resistance in the HAR capillary pores, th...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 1; no. 3; pp. 379 - 386
Main Authors Guo, Dong-Jie, Zhang, Hao, Li, Jia-Bo, Fang, Shao-Ming, Dai, Zhen-Dong, Tan, Wei
Format Journal Article
LanguageEnglish
Published England 21.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inspired by the setal microstructure found on the gecko's toe-pads, a highly dense array of high-aspect-ratio (HAR) artificial setae has been developed with a novel mold-casting technique using a porous silicon (PSi) template. To overcome the high fluid resistance in the HAR capillary pores, the PSi template surface is modified with a monolayer coating of dimethylsilane. The coating exhibits similar chemical composition and surface energy to the precursor of the poly(dimethylsiloxane) (PDMS) replica. The compatibility between the template and the replica addresses the major challenge of molding HAR microstructures, resulting in high-resolution replicas of artificial PDMS microsetae with complicated geometry resembling a real gecko's setae. The artificial setae are characterized by a mean radius of 1.3 μm, an aspect ratio of 35.1, and a density of ~4.7 × 10 per mm . Results from adhesion characterizations reveal that with increasing preload, the shear adhesion of micro-setae continually increases while the normal adhesion decreases. The unique adhesion performance is caused by both van der Waals forces and the elastic resistance of PDMS setae. With further structural optimizations and the addition of an actuation mechanism, artificial setal arrays might eventually demonstrate the fascinating adhesion performances of the gecko for mimetic devices such as wall-climbing devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2050-750X
2050-7518
DOI:10.1039/c2tb00097k