Interaction between the MEC1-dependent DNA synthesis checkpoint and G1 cyclin function in Saccharomyces cerevisiae
The completion of DNA synthesis in yeast is monitored by a checkpoint that requires MEC1 and RAD53. Here we show that deletion of the Saccharomyces cerevisiae G1 cyclins CLN1 and CLN2 suppressed the essential requirement for MEC1 function. Wild-type levels of CLN1 and CLN2, or overexpression of CLN1...
Saved in:
Published in | Genetics (Austin) Vol. 151; no. 2; pp. 459 - 471 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Soc America
01.02.1999
Genetics Society of America |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The completion of DNA synthesis in yeast is monitored by a checkpoint that requires MEC1 and RAD53. Here we show that deletion of the Saccharomyces cerevisiae G1 cyclins CLN1 and CLN2 suppressed the essential requirement for MEC1 function. Wild-type levels of CLN1 and CLN2, or overexpression of CLN1, CLN2, or CLB5, but not CLN3, killed mec1 strains. We identified RNR1, which encodes a subunit of ribonucleotide reductase, as a high-copy suppressor of the lethality of mec1 GAL1-CLN1. Northern analysis demonstrated that RNR1 expression is reduced by CLN1 or CLN2 overexpression. Because limiting RNR1 expression would be expected to decrease dNTP pools, CLN1 and CLN2 may cause lethality in mec1 strains by causing initiation of DNA replication with inadequate dNTPs. In contrast to mec1 mutants, MEC1 strains with low dNTPs would be able to delay S phase and thereby remain viable. We propose that the essential function for MEC1 may be the same as its checkpoint function during hydroxyurea treatment, namely, to slow S phase when nucleotides are limiting. In a cln1 cln2 background, a prolonged period of expression of genes turned on at the G1-S border, such as RNR1, has been observed. Thus deletion of CLN1 and CLN2 could function similarly to overexpression of RNR1 in suppressing mec1 lethality. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0016-6731 1943-2631 1943-2631 |
DOI: | 10.1093/genetics/151.2.459 |