The effects of fall history on kinematic synergy during walking
To prevent falls, control of the swing foot during walking is crucial. Recently, some studies demonstrated that the coordinated movement of lower limbs by kinematic synergy is important for stable walking. However, no study has been carried out to reveal the relation between falls and kinematic syne...
Saved in:
Published in | Journal of biomechanics Vol. 82; pp. 204 - 210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
03.01.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To prevent falls, control of the swing foot during walking is crucial. Recently, some studies demonstrated that the coordinated movement of lower limbs by kinematic synergy is important for stable walking. However, no study has been carried out to reveal the relation between falls and kinematic synergy, and it is unclear whether fall history alters the kinematic synergy. Thus, the purpose of this study was to test the effects of fall history on kinematic synergy using uncontrolled manifold (UCM) analysis. Older adults were divided into two groups: older adults without fall history (non-fallers, n = 14) and older adults with fall history of at least one fall in the 12 months prior to the measurements (fallers, n = 10). Subjects walked at their own comfortable speed on a pathway and kinematic data were collected. UCM analysis was performed to assess how variability of segmental configurations in the frontal plane, the mediolateral and vertical directions, affects the frontal trajectory of the swing foot. Fallers had a greater variability of segmental configurations than non-fallers in all phases. In the mediolateral direction, the kinematic synergy in fallers was significantly greater than that in non-fallers during the early and late swing phases. On the other hands, fallers continuously had greater kinematic synergy compared to non-fallers in the vertical direction. The results revealed that fall history increased the kinematic synergy, although fallers needed a greater variability of segmental configurations as a compensatory strategy to ensure kinematic synergy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2018.10.032 |