The suppression of inflammatory macrophage-mediated cytotoxicity and proinflammatory cytokine production by transgenic expression of HLA-E
Abstract Background Macrophages participate in xenogenic rejection and represent a major biological obstacle to successful xenotransplantation. The signal inhibitory regulatory protein α (SIRPα) receptor was reported to be a negative regulator of macrophage phagocytic activity via interaction with C...
Saved in:
Published in | Transplant immunology Vol. 29; no. 1; pp. 76 - 81 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Background Macrophages participate in xenogenic rejection and represent a major biological obstacle to successful xenotransplantation. The signal inhibitory regulatory protein α (SIRPα) receptor was reported to be a negative regulator of macrophage phagocytic activity via interaction with CD47, its ligand. Because a majority of human macrophages express the inhibitory receptor CD94/NKG2A, which binds specifically to the human leukocyte antigen (HLA)-E and contains immunoreceptor tyrosine-based inhibition motifs (ITIMs), the inhibitory function of HLA class I molecules, HLA-E, on macrophage-mediated cytolysis was examined. The suppressive effect against proinflammatory cytokine production by macrophages was also examined. Methods Complementary DNA (cDNA) of HLA-E, and CD47 were prepared and transfected into swine endothelial cells (SEC). The expression of the modified genes was evaluated by flow cytometry and macrophage-mediated cytolysis was assessed using in vitro generated macrophages. Results Transgenic expression of HLA-E significantly suppressed the macrophage-mediated cytotoxicity. HLA-E transgenic expression demonstrated a significant suppression equivalent to CD47 transgenic expression. Furthermore, transgenic HLA-E suppressed the production of pro-inflammatory cytokines by inflammatory macrophages. Conclusions These results indicate that generating transgenic HLA-E pigs might protect porcine grafts from, not only NK cytotoxicity, but also macrophage-mediated cytotoxicity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0966-3274 1878-5492 |
DOI: | 10.1016/j.trim.2013.08.001 |