Differential Regulation of Gonadotropin-Releasing Hormone Neuron Activity and Membrane Properties by Acutely Applied Estradiol: Dependence on Dose and Estrogen Receptor Subtype
Gonadotropin-releasing hormone (GnRH) neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, nongenomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in bra...
Saved in:
Published in | The Journal of neuroscience Vol. 29; no. 17; pp. 5616 - 5627 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
29.04.2009
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gonadotropin-releasing hormone (GnRH) neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, nongenomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100 pm) to 100 nm enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization amplitudes (ADP), and reduced I(AHP) and enhanced I(ADP). The reduction of I(AHP) was occluded by previous blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) beta-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERalpha or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10 pm) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10 pm estradiol reduced firing of GnRH neurons; this was mimicked by an ERalpha agonist. ERalpha agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERbeta agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent on both dose and receptor subtype. In cooperation with genomic actions, nongenomic effects may play a role in feedback regulation of GnRH secretion. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.0352-09.2009 |