Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

A bstract Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for ne...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 1; pp. 1 - 22
Main Authors Kekic, M., Adams, C., Woodruff, K., Renner, J., Church, E., Del Tutto, M., Hernando Morata, J. A., Gómez-Cadenas, J. J., Álvarez, V., Arazi, L., Arnquist, I. J., Azevedo, C. D. R., Bailey, K., Ballester, F., Benlloch-Rodríguez, J. M., Borges, F. I. G. M., Byrnes, N., Cárcel, S., Carrión, J. V., Cebrián, S., Conde, C. A. N., Contreras, T., Díaz, G., Díaz, J., Diesburg, M., Escada, J., Esteve, R., Felkai, R., Fernandes, A. F. M., Fernandes, L. M. P., Ferrario, P., Ferreira, A. L., Freitas, E. D. C., Generowicz, J., Ghosh, S., Goldschmidt, A., González-Díaz, D., Guenette, R., Gutiérrez, R. M., Haefner, J., Hafidi, K., Hauptman, J., Henriques, C. A. O., Herrero, P., Herrero, V., Ifergan, Y., Jones, B. J. P., Labarga, L., Laing, A., Lebrun, P., López-March, N., Losada, M., Mano, R. D. P., Martín-Albo, J., Martínez, A., Martínez-Lema, G., Martínez-Vara, M., McDonald, A. D., Meziani, Z.-E., Monrabal, F., Monteiro, C. M. B., Mora, F. J., Muñoz Vidal, J., Novella, P., Nygren, D. R., Palmeiro, B., Para, A., Pérez, J., Querol, M., Redwine, A. B., Ripoll, L., Rodríguez García, Y., Rodríguez, J., Rogers, L., Romeo, B., Romo-Luque, C., Santos, F. P., dos Santos, J. M. F., Simón, A., Sofka, C., Sorel, M., Stiegler, T., Toledo, J. F., Torrent, J., Usón, A., Veloso, J. F. C. A., Webb, R., Weiss-Babai, R., White, J. T., Yahlali, N.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Springer Berlin
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A bstract Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in 136 Xe. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a 228 Th calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses.
Bibliography:FERMILAB-PUB-20-648-ND-SCD; arXiv:2009.10783; PNNL-SA-159903
USDOE Office of Science (SC), High Energy Physics (HEP)
NEXT Collaboration
USDOE Office of Science (SC), Nuclear Physics (NP)
AC02-07CH11359; FG02-13ER42020; SC0019223; SC0019054; AC05-76RL01830; AC02-05CH11231; AC02-06CH11357
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2021)189