Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment
A bstract Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for ne...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 1; pp. 1 - 22 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2021
Springer Nature B.V Springer Berlin SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A
bstract
Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in
136
Xe. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a
228
Th calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses. |
---|---|
Bibliography: | FERMILAB-PUB-20-648-ND-SCD; arXiv:2009.10783; PNNL-SA-159903 USDOE Office of Science (SC), High Energy Physics (HEP) NEXT Collaboration USDOE Office of Science (SC), Nuclear Physics (NP) AC02-07CH11359; FG02-13ER42020; SC0019223; SC0019054; AC05-76RL01830; AC02-05CH11231; AC02-06CH11357 |
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP01(2021)189 |