Organic matter composition and thermal stability influence greenhouse gases production in subtropical peatland under different vegetation types

Peatlands are a major carbon (C) sink globally. Organic matter quality influence greenhouse gases production. However, little is known about how organic matter from different vegetation types, influences C composition and resultant greenhouse gases production in subtropical peatland. Anoxic incubati...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 8; no. 11; p. e11547
Main Authors Akinbi, G.O., Ngatia, L.W., Grace, J.M., Fu, R., Tan, C., Olaborode, S.O., Abichou, T., Taylor, R.W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Peatlands are a major carbon (C) sink globally. Organic matter quality influence greenhouse gases production. However, little is known about how organic matter from different vegetation types, influences C composition and resultant greenhouse gases production in subtropical peatland. Anoxic incubation experiments were conducted using two types of peats with different botanical origin to assess C composition, CO2 and CH4 production. First peat had cypress dominance and the second knotted spikerush and water lily (spike + lily). Solid-state CPMAS 13C NMR determined C chemical stability, MESTA determined C thermal stability, stable isotopes for C source and gas chromatograph for carbon dioxide (CO2) and methane (CH4). The results indicated dominance of autochthonous C as indicated by δ13C signatures. Low thermal stable C (LTSC) dominated in litter, FL (fermentation layer) and spike + lily sediment, high thermal stable C was dominant in cypress peat. O-alkyl C strongly correlated with LTSC whereas aromatic C correlated negatively with R400 (LTSC:total C ratio). Generally, O-alkyl decreased and alkyl increased along litter-FL-peat continuum. Spike + lily peat exhibited initial stage of decomposition. Indicated by increased alkyl C, aromatic C and aromatic:O-alkyl ratio with increasing peat depth. Also, exhibited 3 times more CH4 and CO2 production compared to cypress peat that dominantly exhibited second stage of decomposition. O-alkyl C exhibited positive relationship with CH4 (P = 0.012, r2 = 0.57) and CO2 (P = 0.047, r2 = 0.41) production whereas R400 related positively with CH4 (P = 0.05, r2 = 0.40). Organic matter thermal and chemical composition varied between the peat types and thermally and chemically labile C influenced CO2 and CH4 production. Carbon composition; Carbon dioxide; Fermentation layer; Litter; Methane; Peat; Thermal stability; Vegetation types.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2022.e11547