Theoretical analysis and finite element simulation of pipeline structure in liquefied soil

A mechanical analysis model for the floating of buried pipelines in soil liquefaction areas is established in this paper. In order to improve the inherent defects of the elastic foundation beam method based on the Winkler model and increase the calculation accuracy, the Pasternak model is introduced...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 7; no. 7; p. e07480
Main Authors Yang, Chunsheng, Li, Shanqing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A mechanical analysis model for the floating of buried pipelines in soil liquefaction areas is established in this paper. In order to improve the inherent defects of the elastic foundation beam method based on the Winkler model and increase the calculation accuracy, the Pasternak model is introduced and the interaction between soil and spring is considered. A mechanical analysis method for buried pipelines in liquefaction zone considering axial load is proposed in present paper. According to the Pasternak model and the deflection curve differential equation, the pipe bending deformation curve equation and the deformation coordination equation are derived. The analytical calculation method of the pipe mechanical response is established. A new method of the mechanical analysis of the floating of buried pipelines in the liquefaction zone is provided. The mechanical response of the pipeline under the conditions of different pipeline parameters and liquefaction zone length is analyzed. The reliability of the analysis method in this paper is verified by the comparison of finite element method (FEM). Considering that the previous researches of scholars mainly focused on straight pipes, there are few studies on the pipe structure nodes in liquefied soil. The mechanical properties of the three-way pipe structure in the soil liquefaction zone are analyzed by the finite element method (FEM). The influence of pipe diameter, wall thickness, liquefied soil density, transition zone length, buried depth, and pipeline internal pressure on the mechanical response of the pipeline is analyzed. Buried pipeline; Liquefied soil; Pasternak model; Pipeline node; Mechanical response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2021.e07480