Determinants of Versican-V1 Proteoglycan Processing by the Metalloproteinase ADAMTS5
Proteolysis of the Glu441-Ala442 bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possi...
Saved in:
Published in | The Journal of biological chemistry Vol. 289; no. 40; pp. 27859 - 27873 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.10.2014
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Proteolysis of the Glu441-Ala442 bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possibility of additional ADAMTS-cleaved processing sites are unknown. We demonstrate here that if Glu441 is mutated, ADAMTS5 cleaves inefficiently at a proximate upstream site but normally does not cleave elsewhere within the GAGβ domain. Chondroitin sulfate (CS) modification of versican is a prerequisite for cleavage at the Glu441-Ala442 site, as demonstrated by reduced processing of CS-deficient or chondroitinase ABC-treated versican-V1. Site-directed mutagenesis identified the N-terminal CS attachment sites Ser507 and Ser525 as essential for processing of the Glu441-Ala442 bond by ADAMTS5. A construct including only these two GAG chains, but not downstream GAG attachment sites, was cleaved efficiently. Therefore, CS chain attachment to Ser507 and Ser525 is necessary and sufficient for versican proteolysis by ADAMTS5. Mutagenesis of Glu441 and an antibody to a peptide spanning Thr432-Gly445 (i.e. containing the scissile bond) reduced versican-V1 processing. ADAMTS5 lacking the C-terminal ancillary domain did not cleave versican, and an ADAMTS5 ancillary domain construct bound versican-V1 via the CS chains. We conclude that docking of ADAMTS5 with two N-terminal GAG chains of versican-V1 via its ancillary domain is required for versican processing at Glu441-Ala442. V1 proteolysis by ADAMTS1 demonstrated a similar requirement for the N-terminal GAG chains and Glu441. Therefore, versican cleavage can be inhibited substantially by mutation of Glu441, Ser507, and Ser525 or by an antibody to the region of the scissile bond. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X 1083-351X |
DOI: | 10.1074/jbc.M114.573287 |