Protective effects of the novel adenosine derivative WS0701 in a mouse model of posttraumatic stress disorder

Aim: To investigate the effects of the novel N6-substituted adenosine derivative {(2R,3S,4R,5R)-3,4-dihydroxy-5-[6-[(4-hydroxy-3-methoxybenzyl)amino]-9H-purin-9-yl]tetrahydrofuran-2-yl} methyl decanoate (WS0701) on stress-induced excessive fear, anxiety, and cognitive deficits in a mouse model of po...

Full description

Saved in:
Bibliographic Details
Published inActa pharmacologica Sinica Vol. 35; no. 1; pp. 24 - 32
Main Authors Huang, Zhong-lin, Liu, Rui, Bai, Xiao-yu, Zhao, Gang, Song, Jun-ke, Wu, Song, Du, Guan-hua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aim: To investigate the effects of the novel N6-substituted adenosine derivative {(2R,3S,4R,5R)-3,4-dihydroxy-5-[6-[(4-hydroxy-3-methoxybenzyl)amino]-9H-purin-9-yl]tetrahydrofuran-2-yl} methyl decanoate (WS0701) on stress-induced excessive fear, anxiety, and cognitive deficits in a mouse model of posttraumatic stress disorder (PTSD). Methods: Molecular modeling approach combining quantum-polarized ligand docking (QPLD), MM/GBSA free-energy calculation and 3D-QSAR analysis was used to evaluate 24 compounds as dual AT1 and ETA receptor antagonists and to reveal their binding modes and structural basis of the inhibitory activity. Pharmacophore-based virtual screening and docking studies were performed to identify more potent dual antagonists. Results: WS0701 administration significantly alleviated fear, anxious behaviors and memory deficits in the mouse model of PTSD. Furthermore, WS0701 administration significantly reduced the stress-induced apoptosis of hippocampal neurons, and increased the Bcl-2/Bax ratio in the hippocampus. The positive control drug paroxetine exerted similar effects on PTSD-like behaviors and hippocampal neuron apoptosis in the mouse model of PTSD, which were comparable to those caused by the high dose of WS0701. Conclusion: WS0701 effectively mitigates stress-induced PTSD-like behaviors in mice, partly via inhibition of neuronal apoptosis in the hippocampus.
Bibliography:Aim: To investigate the effects of the novel N6-substituted adenosine derivative {(2R,3S,4R,5R)-3,4-dihydroxy-5-[6-[(4-hydroxy-3-methoxybenzyl)amino]-9H-purin-9-yl]tetrahydrofuran-2-yl} methyl decanoate (WS0701) on stress-induced excessive fear, anxiety, and cognitive deficits in a mouse model of posttraumatic stress disorder (PTSD). Methods: Molecular modeling approach combining quantum-polarized ligand docking (QPLD), MM/GBSA free-energy calculation and 3D-QSAR analysis was used to evaluate 24 compounds as dual AT1 and ETA receptor antagonists and to reveal their binding modes and structural basis of the inhibitory activity. Pharmacophore-based virtual screening and docking studies were performed to identify more potent dual antagonists. Results: WS0701 administration significantly alleviated fear, anxious behaviors and memory deficits in the mouse model of PTSD. Furthermore, WS0701 administration significantly reduced the stress-induced apoptosis of hippocampal neurons, and increased the Bcl-2/Bax ratio in the hippocampus. The positive control drug paroxetine exerted similar effects on PTSD-like behaviors and hippocampal neuron apoptosis in the mouse model of PTSD, which were comparable to those caused by the high dose of WS0701. Conclusion: WS0701 effectively mitigates stress-induced PTSD-like behaviors in mice, partly via inhibition of neuronal apoptosis in the hippocampus.
posttraumatic stress disorder; WS0701; adenosine; AMG-1; paroxetine; fear; anxiety; memory deficits; hippocampus; apoptosis; Bcl-2; Bax
31-1347/R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1671-4083
1745-7254
DOI:10.1038/aps.2013.143