Improved RRT Path-Planning Algorithm Based on the Clothoid Curve for a Mobile Robot Under Kinematic Constraints

In this paper, we propose an algorithm based on the Rapidly-exploring Random Trees* (RRT*) algorithm for the path planning of mobile robots under kinematic constraints, aiming to generate efficient and smooth paths quickly. Compared to other algorithms, the main contributions of our proposed algorit...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 23; p. 7812
Main Authors Ran, Kemeng, Wang, Yujun, Fang, Can, Chai, Qisen, Dong, Xingxiang, Liu, Guohui
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.12.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose an algorithm based on the Rapidly-exploring Random Trees* (RRT*) algorithm for the path planning of mobile robots under kinematic constraints, aiming to generate efficient and smooth paths quickly. Compared to other algorithms, the main contributions of our proposed algorithm are as follows: First, we introduce a bidirectional expansion strategy that quickly identifies a direct path to the goal point in a short time. Second, a node reconnection strategy is used to eliminate unnecessary nodes, thereby reducing the path length and saving memory. Third, a path deformation strategy based on the Clothoid curve is devised to enhance obstacle avoidance and path-planning capability, ensuring collision-free paths that comply with the kinematic constraints of mobile robots. Simulation results demonstrate that our algorithm is simpler, more computationally efficient, expedites pathfinding, achieves higher success rates, and produces smoother paths compared to existing algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24237812