Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass)
Aims: Rytidosperma species are native Australian grasses which have different growth rates and phosphorus (P) requirements. This study examined the role of root morphology traits in response to P supply. Methods: Nine Rytidosperma species ranging from slowto fast-growth were examined along with Loli...
Saved in:
Published in | Plant and soil Vol. 412; no. 1/2; pp. 7 - 19 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer
01.03.2017
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aims: Rytidosperma species are native Australian grasses which have different growth rates and phosphorus (P) requirements. This study examined the role of root morphology traits in response to P supply. Methods: Nine Rytidosperma species ranging from slowto fast-growth were examined along with Lolium perenne and Bromus hordeaceus. Plants were grown in a glasshouse for 47 days in soil supplied with six levels of P between 0 and 60 mg P per pot. Root mass, length and diameter, root hair length and density, and extent of mycorrhizal colonisation were measured. Results: Across all species there was a positive correlation (P < 0.001) between P uptake and root mass, length and root hair cylinder volume (RHCV; estimated using root diameter, root hair length and root length) at all levels of P supply. An exception was the RHCV of B. hordeaceus, where expected P uptake was not achieved due to a markedly reduced root length at low-P supply. For the Rytidosperma species, morphological plasticity for specific root length, root mass fraction and root hair length ranged from 1.5-fold to 2.7-fold between high-and low-P supply. However, across all species and P levels no single root morphological trait was identified for universally increasing the size of the root system and P uptake. Conclusions: Fast-growing species took up more P as a result of an overall larger root mass, greater root length and larger RHCV. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-016-2933-y |