Global patterns and climatic controls of belowground net carbon fixation
Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 33; pp. 20038 - 20043 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
18.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain. Here we estimate global belowground net primary productivity as the difference between satellite-based total net primary productivity and field observations of aboveground net primary production and assess climatic controls among biomes. On average, belowground carbon productivity is estimated as 24.7 Pg y−1, accounting for 46% of total terrestrial carbon fixation. Across biomes, belowground productivity increases with mean annual precipitation, although the rate of increase diminishes with increasing precipitation. The fraction of total net productivity allocated belowground exceeds 50% in a large fraction of terrestrial ecosystems and decreases from arid to humid ecosystems. This work adds to our understanding of the belowground carbon productivity response to climate change and provides a comprehensive global quantification of root/belowground productivity that will aid the budgeting and modeling of the global carbon cycle. |
---|---|
AbstractList | Significance
The fraction of fixed carbon allocated belowground in terrestrial ecosystems is the most uncertain component of global carbon cycle assessments. Here we present a novel approach to determining global quantification of belowground productivity, which is estimated at 24.7 Pg y
−1
and accounts for 46% of terrestrial carbon fixation. Carbon allocated belowground has a longer residence than its aboveground counterpart, playing a key role in long-term carbon storage. Total belowground productivity increases with precipitation, but the rate of increase decreases from arid to humid ecosystems. The fraction of total fixed carbon entering the soil decreases with precipitation and varies significantly among biomes. These results are indicative of the possible impacts of climate and land use changes on the global carbon cycle.
Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain. Here we estimate global belowground net primary productivity as the difference between satellite-based total net primary productivity and field observations of aboveground net primary production and assess climatic controls among biomes. On average, belowground carbon productivity is estimated as 24.7 Pg y
−1
, accounting for 46% of total terrestrial carbon fixation. Across biomes, belowground productivity increases with mean annual precipitation, although the rate of increase diminishes with increasing precipitation. The fraction of total net productivity allocated belowground exceeds 50% in a large fraction of terrestrial ecosystems and decreases from arid to humid ecosystems. This work adds to our understanding of the belowground carbon productivity response to climate change and provides a comprehensive global quantification of root/belowground productivity that will aid the budgeting and modeling of the global carbon cycle. Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain. Here we estimate global belowground net primary productivity as the difference between satellite-based total net primary productivity and field observations of aboveground net primary production and assess climatic controls among biomes. On average, belowground carbon productivity is estimated as 24.7 Pg y−1, accounting for 46% of total terrestrial carbon fixation. Across biomes, belowground productivity increases with mean annual precipitation, although the rate of increase diminishes with increasing precipitation. The fraction of total net productivity allocated belowground exceeds 50% in a large fraction of terrestrial ecosystems and decreases from arid to humid ecosystems. This work adds to our understanding of the belowground carbon productivity response to climate change and provides a comprehensive global quantification of root/belowground productivity that will aid the budgeting and modeling of the global carbon cycle. The fraction of fixed carbon allocated belowground in terrestrial ecosystems is the most uncertain component of global carbon cycle assessments. Here we present a novel approach to determining global quantification of belowground productivity, which is estimated at 24.7 Pg y −1 and accounts for 46% of terrestrial carbon fixation. Carbon allocated belowground has a longer residence than its aboveground counterpart, playing a key role in long-term carbon storage. Total belowground productivity increases with precipitation, but the rate of increase decreases from arid to humid ecosystems. The fraction of total fixed carbon entering the soil decreases with precipitation and varies significantly among biomes. These results are indicative of the possible impacts of climate and land use changes on the global carbon cycle. Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain. Here we estimate global belowground net primary productivity as the difference between satellite-based total net primary productivity and field observations of aboveground net primary production and assess climatic controls among biomes. On average, belowground carbon productivity is estimated as 24.7 Pg y −1 , accounting for 46% of total terrestrial carbon fixation. Across biomes, belowground productivity increases with mean annual precipitation, although the rate of increase diminishes with increasing precipitation. The fraction of total net productivity allocated belowground exceeds 50% in a large fraction of terrestrial ecosystems and decreases from arid to humid ecosystems. This work adds to our understanding of the belowground carbon productivity response to climate change and provides a comprehensive global quantification of root/belowground productivity that will aid the budgeting and modeling of the global carbon cycle. Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain. Here we estimate global belowground net primary productivity as the difference between satellite-based total net primary productivity and field observations of aboveground net primary production and assess climatic controls among biomes. On average, belowground carbon productivity is estimated as 24.7 Pg y , accounting for 46% of total terrestrial carbon fixation. Across biomes, belowground productivity increases with mean annual precipitation, although the rate of increase diminishes with increasing precipitation. The fraction of total net productivity allocated belowground exceeds 50% in a large fraction of terrestrial ecosystems and decreases from arid to humid ecosystems. This work adds to our understanding of the belowground carbon productivity response to climate change and provides a comprehensive global quantification of root/belowground productivity that will aid the budgeting and modeling of the global carbon cycle. |
Author | Sala, Osvaldo E. Gherardi, Laureano A. |
Author_xml | – sequence: 1 givenname: Laureano A. surname: Gherardi fullname: Gherardi, Laureano A. – sequence: 2 givenname: Osvaldo E. surname: Sala fullname: Sala, Osvaldo E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32747527$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkElLBDEQRoMoOo6ePSkNntupLJ3lIoi4geBFzyGdpLWHNhmTHpd_b2R01FMd6tVXj28XbYYYPEIHGE4wCDpbBJNPCAAXuMFYbKAJBoVrzhRsogkAEbVkhO2g3ZznAKAaCdtohxLBREPEBF1fDbE1Q7Uw4-hTyJUJrrJD_2zG3lY2hjHFIVexq1o_xLfHFJcFCH6srEltDFXXvxc0hj201Zkh-_3vOUUPlxf359f17d3VzfnZbW0bUGPtBGVAvYOWStIx5SRn0gBXjlrnO0lpKzrTAFFGtISDk7gxXBBnlS-wolN0uspdLNtn76wvhmbQi1SU04eOptf_N6F_0o_xVQvGqJSsBBx_B6T4svR51PO4TKE4a8IoZ5Q2VBZqtqJsijkn360_YNBf1euv6vVv9eXi6K_Ymv_pugCHK2Cex5jWe8IVlxyAfgJOvYxH |
CitedBy_id | crossref_primary_10_1093_aobpla_plab056 crossref_primary_10_1111_1365_2435_14539 crossref_primary_10_1016_j_ese_2024_100404 crossref_primary_10_1111_gcb_16744 crossref_primary_10_1016_j_apsoil_2023_105201 crossref_primary_10_1016_j_geoderma_2023_116678 crossref_primary_10_1021_acs_est_2c09827 crossref_primary_10_1111_1365_2745_14319 crossref_primary_10_3389_fpls_2022_1014980 crossref_primary_10_1002_ecy_3688 crossref_primary_10_1016_j_geomorph_2024_109272 crossref_primary_10_1038_s41586_021_03871_y crossref_primary_10_1111_gcb_15496 crossref_primary_10_1111_nph_18515 crossref_primary_10_1111_geb_13705 crossref_primary_10_1093_jpe_rtab059 crossref_primary_10_1111_nph_18469 crossref_primary_10_1111_nph_19159 crossref_primary_10_1016_j_soilbio_2022_108725 crossref_primary_10_1021_acs_est_3c05448 crossref_primary_10_1111_ele_13761 crossref_primary_10_1016_j_scitotenv_2023_166209 crossref_primary_10_1002_ecy_3891 crossref_primary_10_1111_gcb_16090 crossref_primary_10_1111_gcb_16092 crossref_primary_10_1002_agj2_21539 crossref_primary_10_1080_17583004_2021_1977390 crossref_primary_10_1029_2021JG006472 crossref_primary_10_1111_1365_2435_13972 crossref_primary_10_1016_j_rhisph_2024_100905 crossref_primary_10_1111_gcb_16967 crossref_primary_10_1016_j_resconrec_2023_107279 crossref_primary_10_1111_nph_17561 crossref_primary_10_1007_s10533_023_01078_z crossref_primary_10_1016_j_agrformet_2023_109636 crossref_primary_10_1016_j_ecolind_2021_107965 crossref_primary_10_1111_ele_13651 crossref_primary_10_1016_j_catena_2024_108006 crossref_primary_10_1017_qpb_2021_11 crossref_primary_10_1098_rstb_2021_0075 crossref_primary_10_1016_j_baae_2021_07_007 crossref_primary_10_1016_j_foreco_2020_118886 crossref_primary_10_1111_sum_12883 crossref_primary_10_1111_1365_2435_14033 crossref_primary_10_1002_ecy_4193 crossref_primary_10_1007_s10661_022_10668_7 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_1016_j_agee_2023_108655 crossref_primary_10_1016_j_geoderma_2024_116943 crossref_primary_10_1007_s13157_022_01622_x crossref_primary_10_1016_j_catena_2023_107683 crossref_primary_10_1111_gcb_16278 crossref_primary_10_3390_rs14194929 crossref_primary_10_1038_s41559_021_01548_3 crossref_primary_10_1111_gcb_15664 crossref_primary_10_1111_ejss_13219 crossref_primary_10_1016_j_foreco_2023_121661 |
Cites_doi | 10.1111/nph.15361 10.1111/j.1461-0248.2012.01775.x 10.1111/j.1469-8137.2011.03952.x 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2 10.1007/978-1-4612-1224-9_3 10.1007/s100210000064 10.1002/ecy.2229 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2 10.1038/nature10386 10.1007/s10021-006-0015-3 10.1007/s11104-008-9579-3 10.1111/gcb.14480 10.1111/gcb.13706 10.1002/joc.5086 10.1073/pnas.94.14.7362 10.2307/1938964 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2 10.1038/ngeo2882 10.1111/j.1365-2435.2008.01479.x 10.1126/science.291.5503.481 10.1038/ngeo2413 10.1029/2018JG004760 10.1111/j.1365-2486.2007.01439.x 10.2307/2401901 10.1098/rstb.2011.0347 10.1007/BF00333714 10.1890/08-1609.1 10.1023/A:1006301010014 10.1038/nplants.2015.80 10.1038/s41586-018-0848-x 10.1016/j.rse.2004.12.011 10.2307/1941874 10.1201/9780203909423.ch12 10.1038/nature02561 10.1139/x81-082 10.1890/0012-9658(1998)079[0587:RBAPIA]2.0.CO;2 10.1016/S0034-4257(99)00056-5 10.1890/1051-0761(2001)011[1194:NPPOUS]2.0.CO;2 10.5194/essd-10-405-2018 10.1111/j.1469-8137.2005.01569.x 10.1016/j.geoderma.2015.08.043 10.1038/nature06275 10.1038/s41467-019-10944-0 10.1111/ele.12690 10.1126/science.1082750 10.1146/annurev.es.16.110185.002051 10.1111/nph.12426 10.1016/j.jaridenv.2011.03.003 10.1038/s41598-019-42709-6 10.1016/j.rse.2009.08.016 10.1111/nph.12344 10.1007/978-1-4612-1224-9_5 10.1007/s10021-004-0218-4 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Aug 18, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Aug 18, 2020 – notice: 2020 |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.2006715117 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 20043 |
ExternalDocumentID | 10_1073_pnas_2006715117 32747527 26968600 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DEB 17-54106 – fundername: National Science Foundation (NSF) grantid: 18-32194 – fundername: National Science Foundation (NSF) grantid: DEB 14-56597 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c509t-d73403ed0b382f49d8648a069d3cdef833b7fa5029a7b260d815a672dc9e9d893 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:26:06 EDT 2024 Thu Oct 10 18:21:21 EDT 2024 Fri Aug 23 01:31:45 EDT 2024 Sat Sep 28 08:25:58 EDT 2024 Fri Feb 02 07:18:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | allocation global C cycle BNPP primary production root production |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-d73403ed0b382f49d8648a069d3cdef833b7fa5029a7b260d815a672dc9e9d893 |
Notes | Author contributions: L.A.G. and O.E.S. conceived the idea for the project; L.A.G. collected, compiled, and analyzed the data; and L.A.G. and O.E.S. wrote the paper. Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved July 1, 2020 (received for review April 8, 2020) |
ORCID | 0000-0003-0142-9450 0000-0001-5743-1096 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/33/20038.full.pdf |
PMID | 32747527 |
PQID | 2436433538 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7443884 proquest_journals_2436433538 crossref_primary_10_1073_pnas_2006715117 pubmed_primary_32747527 jstor_primary_26968600 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-18 |
PublicationDateYYYYMMDD | 2020-08-18 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_2_2 Wall D. H. (e_1_3_4_7_2) 2013 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 Sakamoto Y. (e_1_3_4_56_2) 1986 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 R Core Team (e_1_3_4_57_2) 2018 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 Odum E. P. (e_1_3_4_17_2) 1971 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_5_2 doi: 10.1111/nph.15361 – ident: e_1_3_4_46_2 doi: 10.1111/j.1461-0248.2012.01775.x – ident: e_1_3_4_39_2 doi: 10.1111/j.1469-8137.2011.03952.x – ident: e_1_3_4_23_2 doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2 – ident: e_1_3_4_24_2 doi: 10.1007/978-1-4612-1224-9_3 – ident: e_1_3_4_20_2 doi: 10.1007/s100210000064 – ident: e_1_3_4_51_2 doi: 10.1002/ecy.2229 – ident: e_1_3_4_22_2 doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2 – ident: e_1_3_4_4_2 doi: 10.1038/nature10386 – ident: e_1_3_4_15_2 doi: 10.1007/s10021-006-0015-3 – ident: e_1_3_4_26_2 doi: 10.1007/s11104-008-9579-3 – ident: e_1_3_4_9_2 doi: 10.1111/gcb.14480 – ident: e_1_3_4_13_2 doi: 10.1111/gcb.13706 – ident: e_1_3_4_34_2 doi: 10.1002/joc.5086 – ident: e_1_3_4_3_2 doi: 10.1073/pnas.94.14.7362 – ident: e_1_3_4_11_2 doi: 10.2307/1938964 – ident: e_1_3_4_19_2 doi: 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2 – ident: e_1_3_4_1_2 doi: 10.1038/ngeo2882 – ident: e_1_3_4_16_2 doi: 10.1111/j.1365-2435.2008.01479.x – ident: e_1_3_4_10_2 doi: 10.1126/science.291.5503.481 – ident: e_1_3_4_2_2 doi: 10.1038/ngeo2413 – ident: e_1_3_4_53_2 doi: 10.1029/2018JG004760 – ident: e_1_3_4_35_2 doi: 10.1111/j.1365-2486.2007.01439.x – ident: e_1_3_4_58_2 – ident: e_1_3_4_21_2 doi: 10.2307/2401901 – ident: e_1_3_4_31_2 doi: 10.1098/rstb.2011.0347 – ident: e_1_3_4_36_2 doi: 10.1007/BF00333714 – ident: e_1_3_4_27_2 doi: 10.1890/08-1609.1 – ident: e_1_3_4_41_2 doi: 10.1023/A:1006301010014 – ident: e_1_3_4_48_2 doi: 10.1038/nplants.2015.80 – ident: e_1_3_4_6_2 doi: 10.1038/s41586-018-0848-x – volume-title: R: A Language and Environment for Statistical Computing year: 2018 ident: e_1_3_4_57_2 contributor: fullname: R Core Team – ident: e_1_3_4_52_2 doi: 10.1016/j.rse.2004.12.011 – ident: e_1_3_4_50_2 doi: 10.2307/1941874 – ident: e_1_3_4_37_2 doi: 10.1201/9780203909423.ch12 – ident: e_1_3_4_30_2 doi: 10.1038/nature02561 – ident: e_1_3_4_45_2 doi: 10.1139/x81-082 – ident: e_1_3_4_14_2 doi: 10.1890/0012-9658(1998)079[0587:RBAPIA]2.0.CO;2 – ident: e_1_3_4_47_2 doi: 10.1016/S0034-4257(99)00056-5 – start-page: 902 volume-title: Akaike Information Criterion Statistics year: 1986 ident: e_1_3_4_56_2 contributor: fullname: Sakamoto Y. – ident: e_1_3_4_55_2 doi: 10.1890/1051-0761(2001)011[1194:NPPOUS]2.0.CO;2 – ident: e_1_3_4_8_2 doi: 10.5194/essd-10-405-2018 – ident: e_1_3_4_44_2 doi: 10.1111/j.1469-8137.2005.01569.x – ident: e_1_3_4_25_2 doi: 10.1016/j.geoderma.2015.08.043 – ident: e_1_3_4_42_2 doi: 10.1038/nature06275 – volume-title: Soil Ecology and Ecosystem Services year: 2013 ident: e_1_3_4_7_2 contributor: fullname: Wall D. H. – ident: e_1_3_4_49_2 doi: 10.1038/s41467-019-10944-0 – ident: e_1_3_4_32_2 doi: 10.1111/ele.12690 – volume-title: Fundamentals of Ecology year: 1971 ident: e_1_3_4_17_2 contributor: fullname: Odum E. P. – ident: e_1_3_4_33_2 doi: 10.1126/science.1082750 – ident: e_1_3_4_38_2 doi: 10.1146/annurev.es.16.110185.002051 – ident: e_1_3_4_40_2 doi: 10.1111/nph.12426 – ident: e_1_3_4_29_2 doi: 10.1016/j.jaridenv.2011.03.003 – ident: e_1_3_4_12_2 doi: 10.1038/s41598-019-42709-6 – ident: e_1_3_4_54_2 doi: 10.1016/j.rse.2009.08.016 – ident: e_1_3_4_43_2 doi: 10.1111/nph.12344 – ident: e_1_3_4_18_2 doi: 10.1007/978-1-4612-1224-9_5 – ident: e_1_3_4_28_2 doi: 10.1007/s10021-004-0218-4 |
SSID | ssj0009580 |
Score | 2.5902925 |
Snippet | Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance,... Significance The fraction of fixed carbon allocated belowground in terrestrial ecosystems is the most uncertain component of global carbon cycle assessments.... The fraction of fixed carbon allocated belowground in terrestrial ecosystems is the most uncertain component of global carbon cycle assessments. Here we... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 20038 |
SubjectTerms | Annual precipitation Aridity Biological Sciences Carbon Carbon cycle Carbon fixation Climate change Environmental assessment Environmental changes Net Primary Productivity Organic carbon Organic soils Precipitation Primary production Productivity Soils Terrestrial ecosystems Terrestrial environments |
Title | Global patterns and climatic controls of belowground net carbon fixation |
URI | https://www.jstor.org/stable/26968600 https://www.ncbi.nlm.nih.gov/pubmed/32747527 https://www.proquest.com/docview/2436433538 https://pubmed.ncbi.nlm.nih.gov/PMC7443884 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VTiyIN4GCPDCUITS1HdsZEQIVEIgBJLbIr4hKxa1oEfx8bCcpDzEx52xF5_P5u-S7zwDHGucyZ7xIBZY0pVZVaaGKLNWYq2yoRGVU-DRwe8dGj_T6KX_qQN72wkTSvlbjUzd5OXXj58itnL3oQcsTG9zfnnNKiRB0sAIrPkDbEn2ptCvqvhPs0y_FtNXz4WQwc7JW6Ob-nBuG-_dIKMrycKXMt1OpJib-BTl_Mye_HUWX67DWYEh0Vr_rBnSs24SNZpfOUb-Rkj7ZglEt6Y9mUUXTzZF0BunJOOq0ooamPkfTCik7mb6HFg9v4OwCafmqpg5V44-4dNvweHnxcD5Km7sTUu0hwCI1nNCMWJMpInBFCyMYFTJjhSHa2EoQongl8wwXkitf0xgxzCXj2OjCeuOC7EDXTZ3dA8QEs7qyjMvMz8lYSI_EMkkNwZlkJIF-67tyVktklPHXNidl8Hj55fEEdqJvl3Y4aPN4zJVAr3V22WwiP44Sj5eIT8kJ7NZ-Xw5sFy4B_mNFlgZBNvvnEx9NUT67iZ79f488gFUcqu4gjCt60F28vtlDD00W6siD8quboxiQnxQ04t0 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xcGAvK95kYRcfOMAh1LUd2zkiBOoCRRxA4hb5FVGpuBXtCn7-2k5SHuK058xY0Tw8M8nMNwCHhhSq4KLMJVEsZ07XealLnBsiNO5rWVsdPw0Mb_jgnl0-FA9LUHSzMKlp3-jRiR8_nfjRY-qtnD6ZXtcn1rsdngnGqJSs9w1Wgr9i1hXpC6xd2UyekHABM8I6RB9Be1OvGoxuESJdP27go7EsK-JSmXdxqWlN_Crp_Nw7-S4YXazBjzaLRKfN267DkvMbsN766QwdtWDSx5swaED90TThaPoZUt4iMx4lpFbUNqrP0KRG2o0nL3HIIxB4N0dGPeuJR_XoNSlvC-4vzu_OBnm7PSE3IQmY51ZQhqmzWFNJalZayZlUmJeWGutqSakWtSowKZXQoaqxsl8oLog1pQvEJd2GZT_xbhcQl9yZ2nGhcDiT83hBUscVs5RgxWkGR53sqmkDklGln9uCVlHi1ZvEM9hOsl3QkYjOE7KuDPY7YVetGwU-RkPGRIOSM9hp5L5g7BSXgfigkQVBBM7--CTYUwLQbu3n539zHsDq4G54XV3_ubnag-8k1uARJlfuw_L8-a_7FRKVuf6dzPIf153lOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRCXigKFlAI-cCiHNF7bsZ0jKqyWR6seqNRb5KdYaeuNulu1P7-2kyxbxIlzxlY0D89M8vkbgI-G1KrmoiklUaxkTvuy0Q0uDREaT7T0VqdPA6dnfHbBvl_Wl1ujvjJo3-j5cVhcHYf574yt7K5MNeLEqvPTE8EYlZJVnfXVY3gSYxbzsVHf8O3K_vYJiYcwI2xk9RG06oLqebpFzHaTNIWPptasToNltnJTD0_8V-H5N35yKyFNn8PuUEmiz_0b78EjF17A3hCrK3Q0EEp_egmzntgfdZlLM6yQChaZxTyztaIBrL5CS4-0Wyxv00WPKBDcGhl1rZcB-fldNuAruJh-_XUyK4cJCqWJhcC6tIIyTJ3FmkriWWMlZ1Jh3lhqrPOSUi28qjFplNCxs7FyUisuiDWNi8IN3YedsAzuDSAuuTPecaFw3JPzdEhSxxWzlGDFaQFHo-7arifKaPMPbkHbpPH2j8YL2M-63ciRxNATK68CDkdlt0MoxXWMxqqJRiMX8LrX-2bhaLgCxAOLbAQSefbDJ9GnMon24EMH_73yAzw9_zJtf347-_EWnpHUhiemXHkIO-vrG_cu1ipr_T575T02jeZN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+and+climatic+controls+of+belowground+net+carbon+fixation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gherardi%2C+Laureano+A.&rft.au=Sala%2C+Osvaldo+E.&rft.date=2020-08-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=33&rft.spage=20038&rft.epage=20043&rft_id=info:doi/10.1073%2Fpnas.2006715117&rft_id=info%3Apmid%2F32747527&rft.externalDBID=PMC7443884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |