Changes in belowground biodiversity during ecosystem development
Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and inverte...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 14; pp. 6891 - 6896 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1818400116 |
Cover
Loading…
Abstract | Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries tomillennia. |
---|---|
AbstractList | Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia. Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia. Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries tomillennia. We do not know how and why belowground biodiversity may change as soils develop over centuries to millennia, hampering our ability to predict the myriad of ecosystem processes regulated by belowground organisms under changing environments. We conducted a global survey of 16 soil chronosequences spanning a wide range of ecosystem types and found that in less productive ecosystems, increases in belowground biodiversity followed increases in plant cover, but in more productive ecosystems, acidification during soil development was often associated with declines in belowground biodiversity. The biodiversity of multiple soil organisms exhibited similar patterns over time, but in contrast to expectations, changes in plant diversity were not associated with corresponding changes in belowground biodiversity. Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia. |
Author | García-Velázquez, Laura Sullivan, Benjamin W. Delgado-Baquerizo, Manuel Lambers, Hans Hayes, Patrick E. Fierer, Noah Cutler, Nick A. Abades, Sebastián R. Vitousek, Peter M. Weber-Grullon, Luis Siebe, Christina Eldridge, David J. Reed, Sasha C. Santos, Fernanda Sala, Osvaldo E. Maestre, Fernando T. Berhe, Asmeret A. Pérez, Cecilia A. Peña-Ramírez, Victor M. Bardgett, Richard D. Hart, Stephen C. Bowker, Matthew A. Currier, Courtney M. Neuhauser, Sigrid Hseu, Zeng-Yei Kirchmair, Martin Williams, Mark A. Gallardo, Antonio Alfaro, Fernando D. |
Author_xml | – sequence: 1 givenname: Manuel surname: Delgado-Baquerizo fullname: Delgado-Baquerizo, Manuel – sequence: 2 givenname: Richard D. surname: Bardgett fullname: Bardgett, Richard D. – sequence: 3 givenname: Peter M. surname: Vitousek fullname: Vitousek, Peter M. – sequence: 4 givenname: Fernando T. surname: Maestre fullname: Maestre, Fernando T. – sequence: 5 givenname: Mark A. surname: Williams fullname: Williams, Mark A. – sequence: 6 givenname: David J. surname: Eldridge fullname: Eldridge, David J. – sequence: 7 givenname: Hans surname: Lambers fullname: Lambers, Hans – sequence: 8 givenname: Sigrid surname: Neuhauser fullname: Neuhauser, Sigrid – sequence: 9 givenname: Antonio surname: Gallardo fullname: Gallardo, Antonio – sequence: 10 givenname: Laura surname: García-Velázquez fullname: García-Velázquez, Laura – sequence: 11 givenname: Osvaldo E. surname: Sala fullname: Sala, Osvaldo E. – sequence: 12 givenname: Sebastián R. surname: Abades fullname: Abades, Sebastián R. – sequence: 13 givenname: Fernando D. surname: Alfaro fullname: Alfaro, Fernando D. – sequence: 14 givenname: Asmeret A. surname: Berhe fullname: Berhe, Asmeret A. – sequence: 15 givenname: Matthew A. surname: Bowker fullname: Bowker, Matthew A. – sequence: 16 givenname: Courtney M. surname: Currier fullname: Currier, Courtney M. – sequence: 17 givenname: Nick A. surname: Cutler fullname: Cutler, Nick A. – sequence: 18 givenname: Stephen C. surname: Hart fullname: Hart, Stephen C. – sequence: 19 givenname: Patrick E. surname: Hayes fullname: Hayes, Patrick E. – sequence: 20 givenname: Zeng-Yei surname: Hseu fullname: Hseu, Zeng-Yei – sequence: 21 givenname: Martin surname: Kirchmair fullname: Kirchmair, Martin – sequence: 22 givenname: Victor M. surname: Peña-Ramírez fullname: Peña-Ramírez, Victor M. – sequence: 23 givenname: Cecilia A. surname: Pérez fullname: Pérez, Cecilia A. – sequence: 24 givenname: Sasha C. surname: Reed fullname: Reed, Sasha C. – sequence: 25 givenname: Fernanda surname: Santos fullname: Santos, Fernanda – sequence: 26 givenname: Christina surname: Siebe fullname: Siebe, Christina – sequence: 27 givenname: Benjamin W. surname: Sullivan fullname: Sullivan, Benjamin W. – sequence: 28 givenname: Luis surname: Weber-Grullon fullname: Weber-Grullon, Luis – sequence: 29 givenname: Noah surname: Fierer fullname: Fierer, Noah |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30877251$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS3Uik4H1qxAkdiwSXuvH4m9QUUjHpUqdQNry5M4U48Se7CTQfPvcTRlgC66siV_59xzfS7JmQ_eEvIG4QqhZtc7b9IVSpQcALF6QRYICsuKKzgjCwBal5JTfkEuU9oCgBISXpILBrKuqcAFuVk9GL-xqXC-WNs-_NrEMPm2WLvQur2NyY2Hop2i85vCNiEd0miHorX7zO4G68dX5LwzfbKvH88l-fHl8_fVt_Lu_uvt6tNd2QhQY9lSJQ1tGVeSScnMeo7QYQ21Mooj6xSaqqO1FULWrWnyFa3gneh4w7KWLcnHo-9uWg-2bfLoaHq9i24w8aCDcfr_F-8e9CbsdcUFreRs8OHRIIafk02jHlxqbN8bb8OUNEXFsFIMVEbfP0G3YYo-r6cppUgZFTnykrz7N9Epyp_PzcD1EWhiSCna7oQg6Lk-Pden_9aXFeKJonGjGV2YV3L9M7q3R902jSGextCqUlIoYL8BNDmoiw |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2025_117201 crossref_primary_10_1007_s11104_024_06641_7 crossref_primary_10_1016_j_scitotenv_2023_169488 crossref_primary_10_1016_j_jenvman_2024_120289 crossref_primary_10_3390_plants12112176 crossref_primary_10_1016_j_soilbio_2022_108656 crossref_primary_10_1038_s41396_021_00906_0 crossref_primary_10_1016_j_soilbio_2024_109623 crossref_primary_10_3389_fmicb_2023_1214186 crossref_primary_10_1126_sciadv_aaz1834 crossref_primary_10_1007_s12080_020_00498_z crossref_primary_10_1016_j_jprot_2021_104147 crossref_primary_10_3390_land10010036 crossref_primary_10_1111_geb_13273 crossref_primary_10_1128_mSystems_00803_19 crossref_primary_10_1038_s42949_024_00154_z crossref_primary_10_3390_su15075673 crossref_primary_10_1016_j_scitotenv_2021_147189 crossref_primary_10_3390_jof10060435 crossref_primary_10_1016_j_scitotenv_2022_153565 crossref_primary_10_1371_journal_pbio_3002736 crossref_primary_10_1016_j_jprot_2021_104428 crossref_primary_10_1111_ele_13648 crossref_primary_10_1007_s10021_024_00952_7 crossref_primary_10_1007_s10021_021_00642_8 crossref_primary_10_1016_j_ecoleng_2020_106067 crossref_primary_10_1016_j_scitotenv_2023_167217 crossref_primary_10_1111_1365_2664_14172 crossref_primary_10_1111_mec_17241 crossref_primary_10_1016_j_ecoleng_2022_106742 crossref_primary_10_1016_j_eja_2024_127188 crossref_primary_10_1002_ldr_3600 crossref_primary_10_1002_sae2_12119 crossref_primary_10_1007_s10533_020_00657_8 crossref_primary_10_1111_gcb_70004 crossref_primary_10_1016_j_scitotenv_2022_154405 crossref_primary_10_3389_fmicb_2020_579072 crossref_primary_10_1016_j_apsoil_2022_104572 crossref_primary_10_1016_j_apsoil_2023_104894 crossref_primary_10_1016_j_oneear_2024_10_004 crossref_primary_10_1038_s41467_019_11472_7 crossref_primary_10_3390_land9110455 crossref_primary_10_1186_s40663_021_00299_8 crossref_primary_10_1016_j_funeco_2020_100939 crossref_primary_10_1038_s41558_023_01627_2 crossref_primary_10_1016_j_apsoil_2022_104739 crossref_primary_10_1007_s11104_023_06395_8 crossref_primary_10_1016_j_catena_2021_105251 crossref_primary_10_21425_fob_17_132637 crossref_primary_10_3390_su15108138 crossref_primary_10_1111_1365_2435_13783 crossref_primary_10_1111_geb_13373 crossref_primary_10_1111_nph_16517 crossref_primary_10_1111_geb_13770 crossref_primary_10_1371_journal_pone_0290292 crossref_primary_10_1007_s00203_021_02535_9 crossref_primary_10_1016_j_scitotenv_2024_174822 crossref_primary_10_1111_1462_2920_15683 crossref_primary_10_1126_sciadv_abe3596 crossref_primary_10_1016_j_geoderma_2023_116447 crossref_primary_10_1016_j_scitotenv_2024_170464 crossref_primary_10_3390_f14081612 crossref_primary_10_3389_fmicb_2021_636405 crossref_primary_10_1038_s41561_024_01440_2 crossref_primary_10_1038_s41598_020_78483_z crossref_primary_10_1128_msystems_00783_19 crossref_primary_10_1016_j_apsoil_2023_104808 crossref_primary_10_1111_rec_13635 crossref_primary_10_1029_2023JG007813 crossref_primary_10_1111_rec_13112 crossref_primary_10_1146_annurev_ecolsys_010521_040017 crossref_primary_10_1126_sciadv_abg5809 crossref_primary_10_1002_ldr_4116 crossref_primary_10_1111_1365_2664_14558 crossref_primary_10_1128_mSystems_00540_20 crossref_primary_10_1073_pnas_2308769121 crossref_primary_10_1007_s11104_023_06175_4 crossref_primary_10_1002_ece3_10919 crossref_primary_10_1002_ecs2_3512 crossref_primary_10_1016_j_marpolbul_2023_115989 crossref_primary_10_1016_j_scitotenv_2022_153137 crossref_primary_10_1038_s41396_022_01225_8 crossref_primary_10_1111_gcb_16743 crossref_primary_10_1007_s11104_023_05882_2 crossref_primary_10_1016_j_envres_2025_121448 crossref_primary_10_3390_agronomy14112712 crossref_primary_10_3390_f12060805 crossref_primary_10_1016_j_scitotenv_2024_178033 crossref_primary_10_1002_sae2_70045 crossref_primary_10_3390_f13020289 crossref_primary_10_1007_s11104_024_07134_3 crossref_primary_10_1007_s41742_024_00703_5 crossref_primary_10_1016_j_soilbio_2021_108331 crossref_primary_10_1016_j_soilbio_2022_108571 crossref_primary_10_1126_science_abq4062 crossref_primary_10_1134_S106422932005004X crossref_primary_10_1111_jbi_14235 crossref_primary_10_1016_j_jenvman_2020_111647 crossref_primary_10_1016_j_gecco_2021_e01841 crossref_primary_10_1038_s41467_024_48289_y crossref_primary_10_1016_j_soilbio_2024_109385 crossref_primary_10_1111_1365_2435_14015 crossref_primary_10_1002_eap_2271 crossref_primary_10_1016_j_ecoleng_2023_107061 crossref_primary_10_1094_PBIOMES_02_24_0028_R crossref_primary_10_1016_j_isci_2020_101624 crossref_primary_10_1038_s41558_024_02019_w crossref_primary_10_1016_j_scitotenv_2023_168505 crossref_primary_10_1007_s10021_021_00648_2 crossref_primary_10_1016_j_catena_2022_106471 crossref_primary_10_1016_j_scitotenv_2020_143169 crossref_primary_10_1016_j_envres_2020_110425 crossref_primary_10_1002_ldr_4577 crossref_primary_10_1111_gcb_70041 crossref_primary_10_1007_s42832_022_0170_2 crossref_primary_10_1111_1462_2920_15827 crossref_primary_10_1016_j_jhazmat_2022_129159 crossref_primary_10_1111_1365_2435_14542 crossref_primary_10_3389_fmicb_2021_679671 crossref_primary_10_1038_s41559_022_01935_4 crossref_primary_10_1109_TGRS_2021_3113594 crossref_primary_10_1186_s40168_023_01539_5 crossref_primary_10_1016_j_catena_2021_105448 crossref_primary_10_1016_j_scitotenv_2021_145010 crossref_primary_10_3390_agriculture12111955 crossref_primary_10_3390_f15020242 crossref_primary_10_1021_acs_est_1c07575 crossref_primary_10_1007_s00248_023_02171_4 crossref_primary_10_1038_s41586_022_05292_x crossref_primary_10_1038_s43705_021_00012_4 crossref_primary_10_1002_ece3_11590 crossref_primary_10_1007_s11104_024_06832_2 crossref_primary_10_1007_s42398_025_00341_3 crossref_primary_10_1002_advs_202410990 crossref_primary_10_1038_s41477_023_01609_4 crossref_primary_10_1016_j_earscirev_2021_103689 crossref_primary_10_1002_ldr_3873 crossref_primary_10_1038_s41559_023_02071_3 crossref_primary_10_3389_fevo_2022_1073177 crossref_primary_10_1080_03650340_2022_2049254 crossref_primary_10_1071_SR19067 crossref_primary_10_1111_geb_13211 crossref_primary_10_1111_fwb_14223 crossref_primary_10_1007_s42832_023_0218_y crossref_primary_10_1016_j_scitotenv_2021_152234 crossref_primary_10_3390_microorganisms10050847 crossref_primary_10_1038_s41467_020_18451_3 crossref_primary_10_1111_nph_17996 crossref_primary_10_1038_s43016_020_00210_8 crossref_primary_10_1038_s43247_022_00567_7 crossref_primary_10_1038_s41558_023_01868_1 crossref_primary_10_1016_j_eng_2021_09_012 crossref_primary_10_1111_ele_13266 crossref_primary_10_1016_j_ecolind_2020_106972 crossref_primary_10_1111_gcb_17160 crossref_primary_10_2139_ssrn_4052481 crossref_primary_10_1111_rec_13156 crossref_primary_10_1073_pnas_1910718116 crossref_primary_10_1016_j_geoderma_2020_114646 crossref_primary_10_1016_j_catena_2021_105980 crossref_primary_10_1016_j_scitotenv_2023_163394 crossref_primary_10_1016_j_soilbio_2024_109390 crossref_primary_10_1016_j_apsoil_2021_104370 crossref_primary_10_1007_s11356_020_10854_5 |
Cites_doi | 10.1016/j.tree.2005.08.009 10.1073/pnas.1103824108 10.1023/A:1010364221169 10.1111/j.1365-2745.2010.01699.x 10.1111/j.1365-2745.2010.01664.x 10.1126/science.1256688 10.1038/s41396-018-0076-2 10.1111/j.2007.0030-1299.16130.x 10.2307/1938144 10.1111/1365-2745.12766 10.1515/9780691190341 10.1111/ele.12826 10.1016/j.tree.2013.02.008 10.1111/j.1574-6941.2008.00444.x 10.1016/0016-7061(76)90066-5 10.1007/s11104-013-1720-2 10.1111/j.1365-2435.2008.01513.x 10.1890/09-1552.1 10.1073/pnas.1320054111 10.1126/science.1098778 10.1002/ece3.1881 10.1038/nrmicro.2017.87 10.1038/s41396-018-0082-4 10.1038/nature13855 10.1126/science.1256330 10.1016/0016-7061(81)90024-0 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Apr 2, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Apr 2, 2019 – notice: 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1818400116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 6896 |
ExternalDocumentID | PMC6452688 30877251 10_1073_pnas_1818400116 26698590 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: Y 801 – fundername: National Science Foundation (NSF) grantid: EAR1331828 – fundername: National Science Foundation (NSF) grantid: DEB 1556090 – fundername: EC | FP7 | FP7 People: Marie-Curie Actions (PEOPLE) grantid: 702057 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-d298a2d34983883ab3087f17079a9413f91a6f27e5587dacf271e54f5f4c32983 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:02:32 EDT 2025 Fri Jul 11 04:49:49 EDT 2025 Sat Aug 23 12:48:51 EDT 2025 Sat May 31 02:14:18 EDT 2025 Tue Jul 01 03:40:01 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Thu May 29 13:25:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | soil biodiversity soil chronosequences acidification global scale ecosystem development |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-d298a2d34983883ab3087f17079a9413f91a6f27e5587dacf271e54f5f4c32983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 2Present address: Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8656 Ibaraki, Japan. Edited by David Tilman, University of Minnesota, St. Paul, MN, and approved February 8, 2019 (received for review October 26, 2018) Author contributions: M.D.-B. and N.F. designed research; M.D.-B., R.D.B., P.M.V., F.T.M., M.A.W., D.J.E., H.L., S.N., A.G., L.G.-V., O.E.S., S.R.A., F.D.A., A.A.B., M.A.B., C.M.C., N.A.C., S.C.H., P.E.H., Z.-Y.H., M.K., V.M.P.-R., C.A.P., S.C.R., F.S., C.S., B.W.S., L.W.-G., and N.F. performed research; M.D.-B., F.T.M., A.G., L.G.-V., and N.F. contributed new reagents/analytic tools; M.D.-B., R.D.B., P.M.V., F.T.M., M.A.W., D.J.E., H.L., S.N., A.G., O.E.S., and N.F. analyzed data; and M.D.-B. and N.F. wrote the paper, with all authors contributing to the drafts. |
ORCID | 0000-0002-6499-576X 0000-0003-3290-7531 0000-0002-4118-2272 0000-0001-5015-6255 0000-0002-9690-4172 0000-0002-5131-0127 0000-0001-5704-4037 0000-0002-2636-6778 0000-0003-2922-1838 0000-0002-6986-7943 0000-0002-4766-9399 0000-0003-1746-7769 0000-0002-6548-8268 0000-0002-2674-4265 0000-0003-0142-9450 0000-0001-7554-4588 0000-0002-9023-6943 0000-0002-2191-486X 0000-0001-9155-5623 0000-0002-5891-0264 0000-0003-0305-1615 0000-0002-7434-4856 0000-0002-7617-239X 0000-0003-4933-2666 0000-0002-6432-4261 0000-0002-8597-8619 |
OpenAccessLink | https://repositorio.uchile.cl/handle/2250/172033 |
PMID | 30877251 |
PQID | 2221232541 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6452688 proquest_miscellaneous_2193169309 proquest_journals_2221232541 pubmed_primary_30877251 crossref_primary_10_1073_pnas_1818400116 crossref_citationtrail_10_1073_pnas_1818400116 jstor_primary_26698590 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-02 |
PublicationDateYYYYMMDD | 2019-04-02 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Carlson ML (e_1_3_4_19_2) 2010; 98 Ortiz-Álvarez R (e_1_3_4_22_2) 2018; 12 Rillig MC (e_1_3_4_14_2) 2001; 233 Peltzet DA (e_1_3_4_25_2) 2010; 80 Jangid K (e_1_3_4_16_2) 2013; 367 Walker TW (e_1_3_4_23_2) 1976; 15 Laliberté E (e_1_3_4_6_2) 2014; 345 Walker LR (e_1_3_4_20_2) 2010; 98 De Deyn GB (e_1_3_4_9_2) 2005; 20 Wu T (e_1_3_4_10_2) 2011; 108 Delgado-Baquerizo M (e_1_3_4_3_2) 2017; 20 Tripathi BM (e_1_3_4_13_2) 2018; 12 Wardle DA (e_1_3_4_4_2) 2008; 117 Roy-Bolduc A (e_1_3_4_18_2) 2015; 6 Vitousek PM (e_1_3_4_24_2) 2004 Wardle DA (e_1_3_4_27_2) 2009; 23 Laliberté E (e_1_3_4_5_2) 2013; 28 Crews TE (e_1_3_4_8_2) 1995; 76 Wagg C (e_1_3_4_2_2) 2014; 111 Wardle DA (e_1_3_4_17_2) 2004; 305 Bardgett RD (e_1_3_4_1_2) 2014; 515 Tedersoo L (e_1_3_4_11_2) 2014; 346 Fierer N (e_1_3_4_12_2) 2017; 15 Alfaro FD (e_1_3_4_21_2) 2017; 105 Tarlera S (e_1_3_4_15_2) 2008; 64 McGill WB (e_1_3_4_26_2) 1981; 26 Jenny H (e_1_3_4_7_2) 1941 |
References_xml | – volume-title: Factors of Soil Formation: A System of Quantitative Pedology year: 1941 ident: e_1_3_4_7_2 – volume: 20 start-page: 625 year: 2005 ident: e_1_3_4_9_2 article-title: Linking aboveground and belowground diversity publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2005.08.009 – volume: 108 start-page: 17720 year: 2011 ident: e_1_3_4_10_2 article-title: Molecular study of worldwide distribution and diversity of soil animals publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1103824108 – volume: 233 start-page: 167 year: 2001 ident: e_1_3_4_14_2 article-title: Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils publication-title: Plant Soil doi: 10.1023/A:1010364221169 – volume: 98 start-page: 1084 year: 2010 ident: e_1_3_4_19_2 article-title: Community development along a proglacial chronosequence: Are above-ground and below-ground community structure controlled more by biotic than abiotic factors? publication-title: J Ecol doi: 10.1111/j.1365-2745.2010.01699.x – volume: 98 start-page: 725 year: 2010 ident: e_1_3_4_20_2 article-title: The use of chronosequences in studies of ecological succession and soil development publication-title: J Ecol doi: 10.1111/j.1365-2745.2010.01664.x – volume: 346 start-page: 1256688 year: 2014 ident: e_1_3_4_11_2 article-title: Fungal biogeography: Global diversity and geography of soil fungi publication-title: Science doi: 10.1126/science.1256688 – volume: 12 start-page: 1658 year: 2018 ident: e_1_3_4_22_2 article-title: Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession publication-title: ISME J doi: 10.1038/s41396-018-0076-2 – volume: 117 start-page: 93 year: 2008 ident: e_1_3_4_4_2 article-title: The response of plant diversity to ecosystem retrogression: Evidence from contrasting long-term chronosequences publication-title: Oikos doi: 10.1111/j.2007.0030-1299.16130.x – volume: 76 start-page: 1407 year: 1995 ident: e_1_3_4_8_2 article-title: Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii publication-title: Ecology doi: 10.2307/1938144 – volume: 105 start-page: 1709 year: 2017 ident: e_1_3_4_21_2 article-title: Microbial communities in soil chronosequences with distinct parent material: The effect of soil pH and litter quality publication-title: J Ecol doi: 10.1111/1365-2745.12766 – volume-title: Nutrient Cycling and Limitation: Hawai’i as a Model System year: 2004 ident: e_1_3_4_24_2 doi: 10.1515/9780691190341 – volume: 20 start-page: 1295 year: 2017 ident: e_1_3_4_3_2 article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe publication-title: Ecol Lett doi: 10.1111/ele.12826 – volume: 28 start-page: 331 year: 2013 ident: e_1_3_4_5_2 article-title: How does pedogenesis drive plant diversity? publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2013.02.008 – volume: 64 start-page: 129 year: 2008 ident: e_1_3_4_15_2 article-title: Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2008.00444.x – volume: 15 start-page: 1 year: 1976 ident: e_1_3_4_23_2 article-title: The fate of phosphorus during pedogenesis publication-title: Geoderma doi: 10.1016/0016-7061(76)90066-5 – volume: 367 start-page: 235 year: 2013 ident: e_1_3_4_16_2 article-title: Progressive and retrogressive ecosystem development coincide with soil bacterial community change in a dune system under lowland temperate rainforest in New Zealand publication-title: Plant Soil doi: 10.1007/s11104-013-1720-2 – volume: 23 start-page: 442 year: 2009 ident: e_1_3_4_27_2 article-title: Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequences publication-title: Funct Ecol doi: 10.1111/j.1365-2435.2008.01513.x – volume: 80 start-page: 509 year: 2010 ident: e_1_3_4_25_2 article-title: Understanding ecosystem retrogression publication-title: Ecol Monogr doi: 10.1890/09-1552.1 – volume: 111 start-page: 5266 year: 2014 ident: e_1_3_4_2_2 article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1320054111 – volume: 305 start-page: 509 year: 2004 ident: e_1_3_4_17_2 article-title: Ecosystem properties and forest decline in contrasting long-term chronosequences publication-title: Science doi: 10.1126/science.1098778 – volume: 6 start-page: 349 year: 2015 ident: e_1_3_4_18_2 article-title: High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis publication-title: Ecol Evol doi: 10.1002/ece3.1881 – volume: 15 start-page: 579 year: 2017 ident: e_1_3_4_12_2 article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.87 – volume: 12 start-page: 1072 year: 2018 ident: e_1_3_4_13_2 article-title: Soil pH mediates the balance between stochastic and deterministic assembly of bacteria publication-title: ISME J doi: 10.1038/s41396-018-0082-4 – volume: 515 start-page: 505 year: 2014 ident: e_1_3_4_1_2 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature doi: 10.1038/nature13855 – volume: 345 start-page: 1602 year: 2014 ident: e_1_3_4_6_2 article-title: Environmental filtering explains variation in plant diversity along resource gradients publication-title: Science doi: 10.1126/science.1256330 – volume: 26 start-page: 267 year: 1981 ident: e_1_3_4_26_2 article-title: Comparative aspects of cycling organic C, N, S, and P through soil organic matter publication-title: Geoderma doi: 10.1016/0016-7061(81)90024-0 |
SSID | ssj0009580 |
Score | 2.6306005 |
Snippet | Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling.... We do not know how and why belowground biodiversity may change as soils develop over centuries to millennia, hampering our ability to predict the myriad of... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6891 |
SubjectTerms | Abiotic factors Acidification Bacteria Biodiversity Biological Sciences Ecological succession Ecosystems Fungi Invertebrates Models, Biological Nutrient availability Nutrient cycles Plant diversity Productivity Resource availability Soil acidification Soil formation Soils Stoichiometry |
Title | Changes in belowground biodiversity during ecosystem development |
URI | https://www.jstor.org/stable/26698590 https://www.ncbi.nlm.nih.gov/pubmed/30877251 https://www.proquest.com/docview/2221232541 https://www.proquest.com/docview/2193169309 https://pubmed.ncbi.nlm.nih.gov/PMC6452688 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF656aWXKkmbljaNqNRDqggX2AWWW_NsVCVuDnblG1pgN7FqQRRsRcqv7yz7AKeulPaCEI-1tTMMM8v3fYPQJ-oLWgpOPYHj3CPEFx6NGATDJM-DHLyal5IofDmKzyfk-zSaDgb3fXbJIh8WD2t5Jf9jVTgGdpUs2X-wrB0UDsA-2Be2YGHYPsnGihrQIlpzPq_vJUWjgoxyVpcWbqF5iFBlKtFmQ5OyiBedmV7ZN1ljcAMjs1B42NFOdCxoDryDq1HXxPiEz69ZWXtHDN4zd7OHWvGAqiW3CI4j8MVrjQrWdP4ObvwTAsuy4b8sZLhbpb1kXBJa2ixbLXrXGtmtFyuC9ruL31u_lDKkXkxUh9AhX3PMBGXFwDTeR3oxNqaqv9cfwR-ilexYXLFmCHkLVK6-GWVFZnv0IzubXFxk49Pp-Bl6HkJ9IVtffJsGPbVmqmQs9D8zmlAJ_vJo-JV0RiFa19UqjyG3vRxmvIle6uLDPVSetIUGvNpGW8ak7r7WIP_8Cn3VruXOKrfnWm7ftVzlWq51LbfnWq_R5Ox0fHzu6WYbXgE548Irw5SysMQkpZhSzHIpFSkCKaDIUsh0RBqwWIQJjyKalKyA3YBHRESCFBjuxTtoo6or_ha5IoXwFJRSexKK_xQeeCwSAbcUPIxDUjhoaOYsK7QSvWyIMs9aRESCMznJWTfJDtq3N9wqEZa_X7rTGsFeBwloSqPUd9CusUqmH-Emg-RYlhQRCRz00Z6GACu_mrGKg-dn8ErHUrHITx30RhnRDt7KaUKF4KBkxbz2Ainevnqmmt20Iu4SUBBT-u4Jv_seveiepV20sbhb8g-QCi_yvdZtfwNQN7b0 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+belowground+biodiversity+during+ecosystem+development&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Delgado-Baquerizo%2C+Manuel&rft.au=Bardgett%2C+Richard+D&rft.au=Vitousek%2C+Peter+M&rft.au=Maestre%2C+Fernando+T&rft.date=2019-04-02&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=14&rft.spage=6891&rft_id=info:doi/10.1073%2Fpnas.1818400116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |