Changes in belowground biodiversity during ecosystem development

Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and inverte...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 14; pp. 6891 - 6896
Main Authors Delgado-Baquerizo, Manuel, Bardgett, Richard D., Vitousek, Peter M., Maestre, Fernando T., Williams, Mark A., Eldridge, David J., Lambers, Hans, Neuhauser, Sigrid, Gallardo, Antonio, García-Velázquez, Laura, Sala, Osvaldo E., Abades, Sebastián R., Alfaro, Fernando D., Berhe, Asmeret A., Bowker, Matthew A., Currier, Courtney M., Cutler, Nick A., Hart, Stephen C., Hayes, Patrick E., Hseu, Zeng-Yei, Kirchmair, Martin, Peña-Ramírez, Victor M., Pérez, Cecilia A., Reed, Sasha C., Santos, Fernanda, Siebe, Christina, Sullivan, Benjamin W., Weber-Grullon, Luis, Fierer, Noah
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.04.2019
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1818400116

Cover

Loading…
Abstract Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries tomillennia.
AbstractList Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.
Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.
Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries tomillennia.
We do not know how and why belowground biodiversity may change as soils develop over centuries to millennia, hampering our ability to predict the myriad of ecosystem processes regulated by belowground organisms under changing environments. We conducted a global survey of 16 soil chronosequences spanning a wide range of ecosystem types and found that in less productive ecosystems, increases in belowground biodiversity followed increases in plant cover, but in more productive ecosystems, acidification during soil development was often associated with declines in belowground biodiversity. The biodiversity of multiple soil organisms exhibited similar patterns over time, but in contrast to expectations, changes in plant diversity were not associated with corresponding changes in belowground biodiversity. Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.
Author García-Velázquez, Laura
Sullivan, Benjamin W.
Delgado-Baquerizo, Manuel
Lambers, Hans
Hayes, Patrick E.
Fierer, Noah
Cutler, Nick A.
Abades, Sebastián R.
Vitousek, Peter M.
Weber-Grullon, Luis
Siebe, Christina
Eldridge, David J.
Reed, Sasha C.
Santos, Fernanda
Sala, Osvaldo E.
Maestre, Fernando T.
Berhe, Asmeret A.
Pérez, Cecilia A.
Peña-Ramírez, Victor M.
Bardgett, Richard D.
Hart, Stephen C.
Bowker, Matthew A.
Currier, Courtney M.
Neuhauser, Sigrid
Hseu, Zeng-Yei
Kirchmair, Martin
Williams, Mark A.
Gallardo, Antonio
Alfaro, Fernando D.
Author_xml – sequence: 1
  givenname: Manuel
  surname: Delgado-Baquerizo
  fullname: Delgado-Baquerizo, Manuel
– sequence: 2
  givenname: Richard D.
  surname: Bardgett
  fullname: Bardgett, Richard D.
– sequence: 3
  givenname: Peter M.
  surname: Vitousek
  fullname: Vitousek, Peter M.
– sequence: 4
  givenname: Fernando T.
  surname: Maestre
  fullname: Maestre, Fernando T.
– sequence: 5
  givenname: Mark A.
  surname: Williams
  fullname: Williams, Mark A.
– sequence: 6
  givenname: David J.
  surname: Eldridge
  fullname: Eldridge, David J.
– sequence: 7
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
– sequence: 8
  givenname: Sigrid
  surname: Neuhauser
  fullname: Neuhauser, Sigrid
– sequence: 9
  givenname: Antonio
  surname: Gallardo
  fullname: Gallardo, Antonio
– sequence: 10
  givenname: Laura
  surname: García-Velázquez
  fullname: García-Velázquez, Laura
– sequence: 11
  givenname: Osvaldo E.
  surname: Sala
  fullname: Sala, Osvaldo E.
– sequence: 12
  givenname: Sebastián R.
  surname: Abades
  fullname: Abades, Sebastián R.
– sequence: 13
  givenname: Fernando D.
  surname: Alfaro
  fullname: Alfaro, Fernando D.
– sequence: 14
  givenname: Asmeret A.
  surname: Berhe
  fullname: Berhe, Asmeret A.
– sequence: 15
  givenname: Matthew A.
  surname: Bowker
  fullname: Bowker, Matthew A.
– sequence: 16
  givenname: Courtney M.
  surname: Currier
  fullname: Currier, Courtney M.
– sequence: 17
  givenname: Nick A.
  surname: Cutler
  fullname: Cutler, Nick A.
– sequence: 18
  givenname: Stephen C.
  surname: Hart
  fullname: Hart, Stephen C.
– sequence: 19
  givenname: Patrick E.
  surname: Hayes
  fullname: Hayes, Patrick E.
– sequence: 20
  givenname: Zeng-Yei
  surname: Hseu
  fullname: Hseu, Zeng-Yei
– sequence: 21
  givenname: Martin
  surname: Kirchmair
  fullname: Kirchmair, Martin
– sequence: 22
  givenname: Victor M.
  surname: Peña-Ramírez
  fullname: Peña-Ramírez, Victor M.
– sequence: 23
  givenname: Cecilia A.
  surname: Pérez
  fullname: Pérez, Cecilia A.
– sequence: 24
  givenname: Sasha C.
  surname: Reed
  fullname: Reed, Sasha C.
– sequence: 25
  givenname: Fernanda
  surname: Santos
  fullname: Santos, Fernanda
– sequence: 26
  givenname: Christina
  surname: Siebe
  fullname: Siebe, Christina
– sequence: 27
  givenname: Benjamin W.
  surname: Sullivan
  fullname: Sullivan, Benjamin W.
– sequence: 28
  givenname: Luis
  surname: Weber-Grullon
  fullname: Weber-Grullon, Luis
– sequence: 29
  givenname: Noah
  surname: Fierer
  fullname: Fierer, Noah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30877251$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS3Uik4H1qxAkdiwSXuvH4m9QUUjHpUqdQNry5M4U48Se7CTQfPvcTRlgC66siV_59xzfS7JmQ_eEvIG4QqhZtc7b9IVSpQcALF6QRYICsuKKzgjCwBal5JTfkEuU9oCgBISXpILBrKuqcAFuVk9GL-xqXC-WNs-_NrEMPm2WLvQur2NyY2Hop2i85vCNiEd0miHorX7zO4G68dX5LwzfbKvH88l-fHl8_fVt_Lu_uvt6tNd2QhQY9lSJQ1tGVeSScnMeo7QYQ21Mooj6xSaqqO1FULWrWnyFa3gneh4w7KWLcnHo-9uWg-2bfLoaHq9i24w8aCDcfr_F-8e9CbsdcUFreRs8OHRIIafk02jHlxqbN8bb8OUNEXFsFIMVEbfP0G3YYo-r6cppUgZFTnykrz7N9Epyp_PzcD1EWhiSCna7oQg6Lk-Pden_9aXFeKJonGjGV2YV3L9M7q3R902jSGextCqUlIoYL8BNDmoiw
CitedBy_id crossref_primary_10_1016_j_geoderma_2025_117201
crossref_primary_10_1007_s11104_024_06641_7
crossref_primary_10_1016_j_scitotenv_2023_169488
crossref_primary_10_1016_j_jenvman_2024_120289
crossref_primary_10_3390_plants12112176
crossref_primary_10_1016_j_soilbio_2022_108656
crossref_primary_10_1038_s41396_021_00906_0
crossref_primary_10_1016_j_soilbio_2024_109623
crossref_primary_10_3389_fmicb_2023_1214186
crossref_primary_10_1126_sciadv_aaz1834
crossref_primary_10_1007_s12080_020_00498_z
crossref_primary_10_1016_j_jprot_2021_104147
crossref_primary_10_3390_land10010036
crossref_primary_10_1111_geb_13273
crossref_primary_10_1128_mSystems_00803_19
crossref_primary_10_1038_s42949_024_00154_z
crossref_primary_10_3390_su15075673
crossref_primary_10_1016_j_scitotenv_2021_147189
crossref_primary_10_3390_jof10060435
crossref_primary_10_1016_j_scitotenv_2022_153565
crossref_primary_10_1371_journal_pbio_3002736
crossref_primary_10_1016_j_jprot_2021_104428
crossref_primary_10_1111_ele_13648
crossref_primary_10_1007_s10021_024_00952_7
crossref_primary_10_1007_s10021_021_00642_8
crossref_primary_10_1016_j_ecoleng_2020_106067
crossref_primary_10_1016_j_scitotenv_2023_167217
crossref_primary_10_1111_1365_2664_14172
crossref_primary_10_1111_mec_17241
crossref_primary_10_1016_j_ecoleng_2022_106742
crossref_primary_10_1016_j_eja_2024_127188
crossref_primary_10_1002_ldr_3600
crossref_primary_10_1002_sae2_12119
crossref_primary_10_1007_s10533_020_00657_8
crossref_primary_10_1111_gcb_70004
crossref_primary_10_1016_j_scitotenv_2022_154405
crossref_primary_10_3389_fmicb_2020_579072
crossref_primary_10_1016_j_apsoil_2022_104572
crossref_primary_10_1016_j_apsoil_2023_104894
crossref_primary_10_1016_j_oneear_2024_10_004
crossref_primary_10_1038_s41467_019_11472_7
crossref_primary_10_3390_land9110455
crossref_primary_10_1186_s40663_021_00299_8
crossref_primary_10_1016_j_funeco_2020_100939
crossref_primary_10_1038_s41558_023_01627_2
crossref_primary_10_1016_j_apsoil_2022_104739
crossref_primary_10_1007_s11104_023_06395_8
crossref_primary_10_1016_j_catena_2021_105251
crossref_primary_10_21425_fob_17_132637
crossref_primary_10_3390_su15108138
crossref_primary_10_1111_1365_2435_13783
crossref_primary_10_1111_geb_13373
crossref_primary_10_1111_nph_16517
crossref_primary_10_1111_geb_13770
crossref_primary_10_1371_journal_pone_0290292
crossref_primary_10_1007_s00203_021_02535_9
crossref_primary_10_1016_j_scitotenv_2024_174822
crossref_primary_10_1111_1462_2920_15683
crossref_primary_10_1126_sciadv_abe3596
crossref_primary_10_1016_j_geoderma_2023_116447
crossref_primary_10_1016_j_scitotenv_2024_170464
crossref_primary_10_3390_f14081612
crossref_primary_10_3389_fmicb_2021_636405
crossref_primary_10_1038_s41561_024_01440_2
crossref_primary_10_1038_s41598_020_78483_z
crossref_primary_10_1128_msystems_00783_19
crossref_primary_10_1016_j_apsoil_2023_104808
crossref_primary_10_1111_rec_13635
crossref_primary_10_1029_2023JG007813
crossref_primary_10_1111_rec_13112
crossref_primary_10_1146_annurev_ecolsys_010521_040017
crossref_primary_10_1126_sciadv_abg5809
crossref_primary_10_1002_ldr_4116
crossref_primary_10_1111_1365_2664_14558
crossref_primary_10_1128_mSystems_00540_20
crossref_primary_10_1073_pnas_2308769121
crossref_primary_10_1007_s11104_023_06175_4
crossref_primary_10_1002_ece3_10919
crossref_primary_10_1002_ecs2_3512
crossref_primary_10_1016_j_marpolbul_2023_115989
crossref_primary_10_1016_j_scitotenv_2022_153137
crossref_primary_10_1038_s41396_022_01225_8
crossref_primary_10_1111_gcb_16743
crossref_primary_10_1007_s11104_023_05882_2
crossref_primary_10_1016_j_envres_2025_121448
crossref_primary_10_3390_agronomy14112712
crossref_primary_10_3390_f12060805
crossref_primary_10_1016_j_scitotenv_2024_178033
crossref_primary_10_1002_sae2_70045
crossref_primary_10_3390_f13020289
crossref_primary_10_1007_s11104_024_07134_3
crossref_primary_10_1007_s41742_024_00703_5
crossref_primary_10_1016_j_soilbio_2021_108331
crossref_primary_10_1016_j_soilbio_2022_108571
crossref_primary_10_1126_science_abq4062
crossref_primary_10_1134_S106422932005004X
crossref_primary_10_1111_jbi_14235
crossref_primary_10_1016_j_jenvman_2020_111647
crossref_primary_10_1016_j_gecco_2021_e01841
crossref_primary_10_1038_s41467_024_48289_y
crossref_primary_10_1016_j_soilbio_2024_109385
crossref_primary_10_1111_1365_2435_14015
crossref_primary_10_1002_eap_2271
crossref_primary_10_1016_j_ecoleng_2023_107061
crossref_primary_10_1094_PBIOMES_02_24_0028_R
crossref_primary_10_1016_j_isci_2020_101624
crossref_primary_10_1038_s41558_024_02019_w
crossref_primary_10_1016_j_scitotenv_2023_168505
crossref_primary_10_1007_s10021_021_00648_2
crossref_primary_10_1016_j_catena_2022_106471
crossref_primary_10_1016_j_scitotenv_2020_143169
crossref_primary_10_1016_j_envres_2020_110425
crossref_primary_10_1002_ldr_4577
crossref_primary_10_1111_gcb_70041
crossref_primary_10_1007_s42832_022_0170_2
crossref_primary_10_1111_1462_2920_15827
crossref_primary_10_1016_j_jhazmat_2022_129159
crossref_primary_10_1111_1365_2435_14542
crossref_primary_10_3389_fmicb_2021_679671
crossref_primary_10_1038_s41559_022_01935_4
crossref_primary_10_1109_TGRS_2021_3113594
crossref_primary_10_1186_s40168_023_01539_5
crossref_primary_10_1016_j_catena_2021_105448
crossref_primary_10_1016_j_scitotenv_2021_145010
crossref_primary_10_3390_agriculture12111955
crossref_primary_10_3390_f15020242
crossref_primary_10_1021_acs_est_1c07575
crossref_primary_10_1007_s00248_023_02171_4
crossref_primary_10_1038_s41586_022_05292_x
crossref_primary_10_1038_s43705_021_00012_4
crossref_primary_10_1002_ece3_11590
crossref_primary_10_1007_s11104_024_06832_2
crossref_primary_10_1007_s42398_025_00341_3
crossref_primary_10_1002_advs_202410990
crossref_primary_10_1038_s41477_023_01609_4
crossref_primary_10_1016_j_earscirev_2021_103689
crossref_primary_10_1002_ldr_3873
crossref_primary_10_1038_s41559_023_02071_3
crossref_primary_10_3389_fevo_2022_1073177
crossref_primary_10_1080_03650340_2022_2049254
crossref_primary_10_1071_SR19067
crossref_primary_10_1111_geb_13211
crossref_primary_10_1111_fwb_14223
crossref_primary_10_1007_s42832_023_0218_y
crossref_primary_10_1016_j_scitotenv_2021_152234
crossref_primary_10_3390_microorganisms10050847
crossref_primary_10_1038_s41467_020_18451_3
crossref_primary_10_1111_nph_17996
crossref_primary_10_1038_s43016_020_00210_8
crossref_primary_10_1038_s43247_022_00567_7
crossref_primary_10_1038_s41558_023_01868_1
crossref_primary_10_1016_j_eng_2021_09_012
crossref_primary_10_1111_ele_13266
crossref_primary_10_1016_j_ecolind_2020_106972
crossref_primary_10_1111_gcb_17160
crossref_primary_10_2139_ssrn_4052481
crossref_primary_10_1111_rec_13156
crossref_primary_10_1073_pnas_1910718116
crossref_primary_10_1016_j_geoderma_2020_114646
crossref_primary_10_1016_j_catena_2021_105980
crossref_primary_10_1016_j_scitotenv_2023_163394
crossref_primary_10_1016_j_soilbio_2024_109390
crossref_primary_10_1016_j_apsoil_2021_104370
crossref_primary_10_1007_s11356_020_10854_5
Cites_doi 10.1016/j.tree.2005.08.009
10.1073/pnas.1103824108
10.1023/A:1010364221169
10.1111/j.1365-2745.2010.01699.x
10.1111/j.1365-2745.2010.01664.x
10.1126/science.1256688
10.1038/s41396-018-0076-2
10.1111/j.2007.0030-1299.16130.x
10.2307/1938144
10.1111/1365-2745.12766
10.1515/9780691190341
10.1111/ele.12826
10.1016/j.tree.2013.02.008
10.1111/j.1574-6941.2008.00444.x
10.1016/0016-7061(76)90066-5
10.1007/s11104-013-1720-2
10.1111/j.1365-2435.2008.01513.x
10.1890/09-1552.1
10.1073/pnas.1320054111
10.1126/science.1098778
10.1002/ece3.1881
10.1038/nrmicro.2017.87
10.1038/s41396-018-0082-4
10.1038/nature13855
10.1126/science.1256330
10.1016/0016-7061(81)90024-0
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 2, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Apr 2, 2019
– notice: 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1818400116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6896
ExternalDocumentID PMC6452688
30877251
10_1073_pnas_1818400116
26698590
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: Y 801
– fundername: National Science Foundation (NSF)
  grantid: EAR1331828
– fundername: National Science Foundation (NSF)
  grantid: DEB 1556090
– fundername: EC | FP7 | FP7 People: Marie-Curie Actions (PEOPLE)
  grantid: 702057
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-d298a2d34983883ab3087f17079a9413f91a6f27e5587dacf271e54f5f4c32983
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:02:32 EDT 2025
Fri Jul 11 04:49:49 EDT 2025
Sat Aug 23 12:48:51 EDT 2025
Sat May 31 02:14:18 EDT 2025
Tue Jul 01 03:40:01 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Thu May 29 13:25:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords soil biodiversity
soil chronosequences
acidification
global scale
ecosystem development
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-d298a2d34983883ab3087f17079a9413f91a6f27e5587dacf271e54f5f4c32983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
2Present address: Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8656 Ibaraki, Japan.
Edited by David Tilman, University of Minnesota, St. Paul, MN, and approved February 8, 2019 (received for review October 26, 2018)
Author contributions: M.D.-B. and N.F. designed research; M.D.-B., R.D.B., P.M.V., F.T.M., M.A.W., D.J.E., H.L., S.N., A.G., L.G.-V., O.E.S., S.R.A., F.D.A., A.A.B., M.A.B., C.M.C., N.A.C., S.C.H., P.E.H., Z.-Y.H., M.K., V.M.P.-R., C.A.P., S.C.R., F.S., C.S., B.W.S., L.W.-G., and N.F. performed research; M.D.-B., F.T.M., A.G., L.G.-V., and N.F. contributed new reagents/analytic tools; M.D.-B., R.D.B., P.M.V., F.T.M., M.A.W., D.J.E., H.L., S.N., A.G., O.E.S., and N.F. analyzed data; and M.D.-B. and N.F. wrote the paper, with all authors contributing to the drafts.
ORCID 0000-0002-6499-576X
0000-0003-3290-7531
0000-0002-4118-2272
0000-0001-5015-6255
0000-0002-9690-4172
0000-0002-5131-0127
0000-0001-5704-4037
0000-0002-2636-6778
0000-0003-2922-1838
0000-0002-6986-7943
0000-0002-4766-9399
0000-0003-1746-7769
0000-0002-6548-8268
0000-0002-2674-4265
0000-0003-0142-9450
0000-0001-7554-4588
0000-0002-9023-6943
0000-0002-2191-486X
0000-0001-9155-5623
0000-0002-5891-0264
0000-0003-0305-1615
0000-0002-7434-4856
0000-0002-7617-239X
0000-0003-4933-2666
0000-0002-6432-4261
0000-0002-8597-8619
OpenAccessLink https://repositorio.uchile.cl/handle/2250/172033
PMID 30877251
PQID 2221232541
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6452688
proquest_miscellaneous_2193169309
proquest_journals_2221232541
pubmed_primary_30877251
crossref_primary_10_1073_pnas_1818400116
crossref_citationtrail_10_1073_pnas_1818400116
jstor_primary_26698590
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-02
PublicationDateYYYYMMDD 2019-04-02
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Carlson ML (e_1_3_4_19_2) 2010; 98
Ortiz-Álvarez R (e_1_3_4_22_2) 2018; 12
Rillig MC (e_1_3_4_14_2) 2001; 233
Peltzet DA (e_1_3_4_25_2) 2010; 80
Jangid K (e_1_3_4_16_2) 2013; 367
Walker TW (e_1_3_4_23_2) 1976; 15
Laliberté E (e_1_3_4_6_2) 2014; 345
Walker LR (e_1_3_4_20_2) 2010; 98
De Deyn GB (e_1_3_4_9_2) 2005; 20
Wu T (e_1_3_4_10_2) 2011; 108
Delgado-Baquerizo M (e_1_3_4_3_2) 2017; 20
Tripathi BM (e_1_3_4_13_2) 2018; 12
Wardle DA (e_1_3_4_4_2) 2008; 117
Roy-Bolduc A (e_1_3_4_18_2) 2015; 6
Vitousek PM (e_1_3_4_24_2) 2004
Wardle DA (e_1_3_4_27_2) 2009; 23
Laliberté E (e_1_3_4_5_2) 2013; 28
Crews TE (e_1_3_4_8_2) 1995; 76
Wagg C (e_1_3_4_2_2) 2014; 111
Wardle DA (e_1_3_4_17_2) 2004; 305
Bardgett RD (e_1_3_4_1_2) 2014; 515
Tedersoo L (e_1_3_4_11_2) 2014; 346
Fierer N (e_1_3_4_12_2) 2017; 15
Alfaro FD (e_1_3_4_21_2) 2017; 105
Tarlera S (e_1_3_4_15_2) 2008; 64
McGill WB (e_1_3_4_26_2) 1981; 26
Jenny H (e_1_3_4_7_2) 1941
References_xml – volume-title: Factors of Soil Formation: A System of Quantitative Pedology
  year: 1941
  ident: e_1_3_4_7_2
– volume: 20
  start-page: 625
  year: 2005
  ident: e_1_3_4_9_2
  article-title: Linking aboveground and belowground diversity
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2005.08.009
– volume: 108
  start-page: 17720
  year: 2011
  ident: e_1_3_4_10_2
  article-title: Molecular study of worldwide distribution and diversity of soil animals
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1103824108
– volume: 233
  start-page: 167
  year: 2001
  ident: e_1_3_4_14_2
  article-title: Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils
  publication-title: Plant Soil
  doi: 10.1023/A:1010364221169
– volume: 98
  start-page: 1084
  year: 2010
  ident: e_1_3_4_19_2
  article-title: Community development along a proglacial chronosequence: Are above-ground and below-ground community structure controlled more by biotic than abiotic factors?
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2010.01699.x
– volume: 98
  start-page: 725
  year: 2010
  ident: e_1_3_4_20_2
  article-title: The use of chronosequences in studies of ecological succession and soil development
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2010.01664.x
– volume: 346
  start-page: 1256688
  year: 2014
  ident: e_1_3_4_11_2
  article-title: Fungal biogeography: Global diversity and geography of soil fungi
  publication-title: Science
  doi: 10.1126/science.1256688
– volume: 12
  start-page: 1658
  year: 2018
  ident: e_1_3_4_22_2
  article-title: Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession
  publication-title: ISME J
  doi: 10.1038/s41396-018-0076-2
– volume: 117
  start-page: 93
  year: 2008
  ident: e_1_3_4_4_2
  article-title: The response of plant diversity to ecosystem retrogression: Evidence from contrasting long-term chronosequences
  publication-title: Oikos
  doi: 10.1111/j.2007.0030-1299.16130.x
– volume: 76
  start-page: 1407
  year: 1995
  ident: e_1_3_4_8_2
  article-title: Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii
  publication-title: Ecology
  doi: 10.2307/1938144
– volume: 105
  start-page: 1709
  year: 2017
  ident: e_1_3_4_21_2
  article-title: Microbial communities in soil chronosequences with distinct parent material: The effect of soil pH and litter quality
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12766
– volume-title: Nutrient Cycling and Limitation: Hawai’i as a Model System
  year: 2004
  ident: e_1_3_4_24_2
  doi: 10.1515/9780691190341
– volume: 20
  start-page: 1295
  year: 2017
  ident: e_1_3_4_3_2
  article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe
  publication-title: Ecol Lett
  doi: 10.1111/ele.12826
– volume: 28
  start-page: 331
  year: 2013
  ident: e_1_3_4_5_2
  article-title: How does pedogenesis drive plant diversity?
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2013.02.008
– volume: 64
  start-page: 129
  year: 2008
  ident: e_1_3_4_15_2
  article-title: Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2008.00444.x
– volume: 15
  start-page: 1
  year: 1976
  ident: e_1_3_4_23_2
  article-title: The fate of phosphorus during pedogenesis
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90066-5
– volume: 367
  start-page: 235
  year: 2013
  ident: e_1_3_4_16_2
  article-title: Progressive and retrogressive ecosystem development coincide with soil bacterial community change in a dune system under lowland temperate rainforest in New Zealand
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1720-2
– volume: 23
  start-page: 442
  year: 2009
  ident: e_1_3_4_27_2
  article-title: Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequences
  publication-title: Funct Ecol
  doi: 10.1111/j.1365-2435.2008.01513.x
– volume: 80
  start-page: 509
  year: 2010
  ident: e_1_3_4_25_2
  article-title: Understanding ecosystem retrogression
  publication-title: Ecol Monogr
  doi: 10.1890/09-1552.1
– volume: 111
  start-page: 5266
  year: 2014
  ident: e_1_3_4_2_2
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1320054111
– volume: 305
  start-page: 509
  year: 2004
  ident: e_1_3_4_17_2
  article-title: Ecosystem properties and forest decline in contrasting long-term chronosequences
  publication-title: Science
  doi: 10.1126/science.1098778
– volume: 6
  start-page: 349
  year: 2015
  ident: e_1_3_4_18_2
  article-title: High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1881
– volume: 15
  start-page: 579
  year: 2017
  ident: e_1_3_4_12_2
  article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2017.87
– volume: 12
  start-page: 1072
  year: 2018
  ident: e_1_3_4_13_2
  article-title: Soil pH mediates the balance between stochastic and deterministic assembly of bacteria
  publication-title: ISME J
  doi: 10.1038/s41396-018-0082-4
– volume: 515
  start-page: 505
  year: 2014
  ident: e_1_3_4_1_2
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
  doi: 10.1038/nature13855
– volume: 345
  start-page: 1602
  year: 2014
  ident: e_1_3_4_6_2
  article-title: Environmental filtering explains variation in plant diversity along resource gradients
  publication-title: Science
  doi: 10.1126/science.1256330
– volume: 26
  start-page: 267
  year: 1981
  ident: e_1_3_4_26_2
  article-title: Comparative aspects of cycling organic C, N, S, and P through soil organic matter
  publication-title: Geoderma
  doi: 10.1016/0016-7061(81)90024-0
SSID ssj0009580
Score 2.6306005
Snippet Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling....
We do not know how and why belowground biodiversity may change as soils develop over centuries to millennia, hampering our ability to predict the myriad of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6891
SubjectTerms Abiotic factors
Acidification
Bacteria
Biodiversity
Biological Sciences
Ecological succession
Ecosystems
Fungi
Invertebrates
Models, Biological
Nutrient availability
Nutrient cycles
Plant diversity
Productivity
Resource availability
Soil acidification
Soil formation
Soils
Stoichiometry
Title Changes in belowground biodiversity during ecosystem development
URI https://www.jstor.org/stable/26698590
https://www.ncbi.nlm.nih.gov/pubmed/30877251
https://www.proquest.com/docview/2221232541
https://www.proquest.com/docview/2193169309
https://pubmed.ncbi.nlm.nih.gov/PMC6452688
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF656aWXKkmbljaNqNRDqggX2AWWW_NsVCVuDnblG1pgN7FqQRRsRcqv7yz7AKeulPaCEI-1tTMMM8v3fYPQJ-oLWgpOPYHj3CPEFx6NGATDJM-DHLyal5IofDmKzyfk-zSaDgb3fXbJIh8WD2t5Jf9jVTgGdpUs2X-wrB0UDsA-2Be2YGHYPsnGihrQIlpzPq_vJUWjgoxyVpcWbqF5iFBlKtFmQ5OyiBedmV7ZN1ljcAMjs1B42NFOdCxoDryDq1HXxPiEz69ZWXtHDN4zd7OHWvGAqiW3CI4j8MVrjQrWdP4ObvwTAsuy4b8sZLhbpb1kXBJa2ixbLXrXGtmtFyuC9ruL31u_lDKkXkxUh9AhX3PMBGXFwDTeR3oxNqaqv9cfwR-ilexYXLFmCHkLVK6-GWVFZnv0IzubXFxk49Pp-Bl6HkJ9IVtffJsGPbVmqmQs9D8zmlAJ_vJo-JV0RiFa19UqjyG3vRxmvIle6uLDPVSetIUGvNpGW8ak7r7WIP_8Cn3VruXOKrfnWm7ftVzlWq51LbfnWq_R5Ox0fHzu6WYbXgE548Irw5SysMQkpZhSzHIpFSkCKaDIUsh0RBqwWIQJjyKalKyA3YBHRESCFBjuxTtoo6or_ha5IoXwFJRSexKK_xQeeCwSAbcUPIxDUjhoaOYsK7QSvWyIMs9aRESCMznJWTfJDtq3N9wqEZa_X7rTGsFeBwloSqPUd9CusUqmH-Emg-RYlhQRCRz00Z6GACu_mrGKg-dn8ErHUrHITx30RhnRDt7KaUKF4KBkxbz2Ainevnqmmt20Iu4SUBBT-u4Jv_seveiepV20sbhb8g-QCi_yvdZtfwNQN7b0
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+belowground+biodiversity+during+ecosystem+development&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Delgado-Baquerizo%2C+Manuel&rft.au=Bardgett%2C+Richard+D&rft.au=Vitousek%2C+Peter+M&rft.au=Maestre%2C+Fernando+T&rft.date=2019-04-02&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=14&rft.spage=6891&rft_id=info:doi/10.1073%2Fpnas.1818400116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon