A Vectorial Current Density Imaging Method Based on Magnetic Gradient Tensor

Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 13; p. 5859
Main Authors Wu, Yangjing, Zhang, Mingji, Peng, Chengyuan, Zhang, Zehuang, He, Yichen, Zhang, Wenwei, Chang, Liang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm2, probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.
AbstractList Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm[sup.2], probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.
Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm2, probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm2, probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.
Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm2, probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.
Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm , probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.
Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm 2 , probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.
Audience Academic
Author Zhang, Mingji
Wu, Yangjing
Zhang, Zehuang
Zhang, Wenwei
Peng, Chengyuan
He, Yichen
Chang, Liang
AuthorAffiliation 1 Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; yangjing.wu@foxmail.com (Y.W.); 2070412005@stumail.sztu.edu.cn (C.P.); zehuang.zhang@foxmail.com (Z.Z.); yichen_he@foxmail.com (Y.H.); zhangwenwei@sztu.edu.cn (W.Z.)
2 State Grid Liaoning Electric Power Co., Ltd., Huludao 125000, China; ln_hld_sgcc@126.com
AuthorAffiliation_xml – name: 2 State Grid Liaoning Electric Power Co., Ltd., Huludao 125000, China; ln_hld_sgcc@126.com
– name: 1 Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China; yangjing.wu@foxmail.com (Y.W.); 2070412005@stumail.sztu.edu.cn (C.P.); zehuang.zhang@foxmail.com (Z.Z.); yichen_he@foxmail.com (Y.H.); zhangwenwei@sztu.edu.cn (W.Z.)
Author_xml – sequence: 1
  givenname: Yangjing
  orcidid: 0009-0001-7036-4294
  surname: Wu
  fullname: Wu, Yangjing
– sequence: 2
  givenname: Mingji
  surname: Zhang
  fullname: Zhang, Mingji
– sequence: 3
  givenname: Chengyuan
  surname: Peng
  fullname: Peng, Chengyuan
– sequence: 4
  givenname: Zehuang
  orcidid: 0009-0001-2051-8080
  surname: Zhang
  fullname: Zhang, Zehuang
– sequence: 5
  givenname: Yichen
  surname: He
  fullname: He, Yichen
– sequence: 6
  givenname: Wenwei
  surname: Zhang
  fullname: Zhang, Wenwei
– sequence: 7
  givenname: Liang
  surname: Chang
  fullname: Chang, Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37447711$$D View this record in MEDLINE/PubMed
BookMark eNplks1vFCEYxompsR968B8wk3ixh235HIaTWbdaN9nGS_VK3mFgymYWKsyY9L-XcdumreEAgd_zwMP7HqODEINF6D3BZ4wpfJ4pI0w0Qr1CR4RTvmgoxQdP1ofoOOctxpQx1rxBh0xyLiUhR2izrH5ZM8bkYahWU0o2jNWFDdmPd9V6B70PfXVlx5vYVV8g266KobqCPtjRm-oyQednxXVRxPQWvXYwZPvufj5BP799vV59X2x-XK5Xy83CCKzGhTFSCmYIkcwa5QALqIUzkjsMNZfG0rYlqiNdy2tTG0yUpQTzRjkBCohjJ2i99-0ibPVt8jtIdzqC1_82Yuo1pPK-werGWAVMEoWV5EzxloOUpri1HDvjoHh93nvdTu3OdqakSTA8M31-EvyN7uMfTTDjtaK4OHy6d0jx92TzqHc-GzsMEGycsqYNayhnUszoxxfoNk4plL-aqZo3XAhWqLM91UNJ4IOL5WJTRmd33pTSO1_2l1I0vGGE10Xw4WmGx8c_lLkA53vApJhzsk4bP8Lo4xzJDyWLnhtJPzZSUZy-UDyY_s_-BY6oxX0
CitedBy_id crossref_primary_10_1109_TED_2024_3427100
Cites_doi 10.1109/19.65824
10.1109/JSEN.2021.3085573
10.1016/j.jpowsour.2022.232587
10.1016/j.sna.2011.08.013
10.1109/77.783928
10.1016/j.jpowsour.2022.231312
10.3390/s17112446
10.1063/5.0103597
10.1098/rsta.2012.0455
10.1109/IPFA.2013.6599179
10.31399/asm.cp.istfa2006p0013
10.1063/1.342549
10.1109/ISIE45552.2021.9576160
10.1016/j.jpowsour.2021.230292
10.1038/s41586-021-04254-z
10.1109/TIM.2017.2789038
10.31399/asm.edfa.2009-4.p014
10.1103/PhysRevApplied.17.014021
10.1063/5.0056361
10.3390/s18020588
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23135859
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8ce9a37190974394b4a77c104b40fcfa
PMC10346920
A758483146
37447711
10_3390_s23135859
Genre Journal Article
GeographicLocations China
Beijing China
GeographicLocations_xml – name: China
– name: Beijing China
GrantInformation_xml – fundername: Special Project of Self-Made Experimental Instruments and Equipment in Shenzhen Technology University
  grantid: JSZZ202201016
– fundername: Natural Science Foundation of Guangdong Province Science and Technology Program of Shenzhen
  grantid: JCYJ20200109115403807
– fundername: National Natural Science Foundation of China
  grantid: 61901271
– fundername: The Postgraduate Innovation Development Fund Project of Shenzhen University
  grantid: 20213108010007
– fundername: Guangdong Regular Universities Special Fund for Major Areas
  grantid: 2022ZDZX3022, 2022GCZX005
– fundername: Postgraduate Innovation Development Fund Project of Shenzhen University
  grantid: 20213108010007
– fundername: Guangdong Regular Universities Special Fund for Major Areas
  grantid: 2022ZDZX3022; 2022GCZX005
– fundername: Natural Science Foundation of Top Talent of SZTU
  grantid: 2020104
– fundername: Special Project of Self-Made Experimental Instruments and Equipment in SZTU
  grantid: JSZZ202201016
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-cc7753c1173ec9fa05a65fc74f0a647ce2bb19d1db46c6c019e210489f5a9a1f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:05:19 EDT 2025
Thu Aug 21 18:36:53 EDT 2025
Fri Jul 11 07:21:49 EDT 2025
Fri Jul 25 20:11:16 EDT 2025
Tue Jun 10 21:27:29 EDT 2025
Wed Feb 19 02:23:53 EST 2025
Tue Jul 01 01:20:12 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords magnetic gradient tensor
current density inversion
nondestructive testing
magnetic current imaging
closed-form inversion
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-cc7753c1173ec9fa05a65fc74f0a647ce2bb19d1db46c6c019e210489f5a9a1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-7036-4294
0009-0001-2051-8080
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23135859
PMID 37447711
PQID 2836484553
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8ce9a37190974394b4a77c104b40fcfa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10346920
proquest_miscellaneous_2838243750
proquest_journals_2836484553
gale_infotracacademiconefile_A758483146
pubmed_primary_37447711
crossref_citationtrail_10_3390_s23135859
crossref_primary_10_3390_s23135859
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230624
PublicationDateYYYYMMDD 2023-06-24
PublicationDate_xml – month: 6
  year: 2023
  text: 20230624
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wikswo (ref_5) 1996; Volume 329
Brauchle (ref_13) 2023; 558
Nakajima (ref_15) 2018; 67
Li (ref_20) 2021; 21
Shen (ref_14) 2011; 171
Brauchle (ref_12) 2021; 507
ref_11
Fleet (ref_3) 1999; 9
Kehayias (ref_10) 2022; 17
Orozco (ref_1) 2009; 11
Marchiori (ref_8) 2022; 121
ref_19
Bason (ref_7) 2022; 533
Wang (ref_17) 2014; 372
ref_18
Roth (ref_2) 1989; 65
Pesikan (ref_4) 1990; 39
Wang (ref_21) 2021; 11
ref_9
Kohno (ref_16) 2022; 602
ref_6
References_xml – volume: 39
  start-page: 1048
  year: 1990
  ident: ref_4
  article-title: Two-dimensional current density imaging
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.65824
– volume: 21
  start-page: 18237
  year: 2021
  ident: ref_20
  article-title: Magnetic Object Positioning Based on Second-Order Magnetic Gradient Tensor System
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3085573
– volume: 558
  start-page: 232587
  year: 2023
  ident: ref_13
  article-title: Defect detection in lithium ion cells by magnetic field imaging and current reconstruction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.232587
– volume: 171
  start-page: 63
  year: 2011
  ident: ref_14
  article-title: Analysis of the environmental magnetic noise rejection by using two simple magnetoelectric sensors
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2011.08.013
– volume: 9
  start-page: 4103
  year: 1999
  ident: ref_3
  article-title: HTS scanning SQUID microscopy of active circuits
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.783928
– volume: 533
  start-page: 231312
  year: 2022
  ident: ref_7
  article-title: Non-invasive current density imaging of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231312
– ident: ref_19
  doi: 10.3390/s17112446
– volume: 121
  start-page: 052601
  year: 2022
  ident: ref_8
  article-title: Magnetic imaging of superconducting qubit devices with scanning SQUID-on-tip
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0103597
– volume: Volume 329
  start-page: 629
  year: 1996
  ident: ref_5
  article-title: The Magnetic Inverse Problem for NDE
  publication-title: SQUID Sensors: Fundamentals, Fabrication and Applications
– volume: 372
  start-page: 20120455
  year: 2014
  ident: ref_17
  article-title: A review on equivalent magnetic noise of magnetoelectric laminate sensors
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2012.0455
– ident: ref_6
  doi: 10.1109/IPFA.2013.6599179
– ident: ref_9
  doi: 10.31399/asm.cp.istfa2006p0013
– volume: 65
  start-page: 361
  year: 1989
  ident: ref_2
  article-title: Using a magnetometer to image a two-dimensional current distribution
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.342549
– ident: ref_11
  doi: 10.1109/ISIE45552.2021.9576160
– volume: 507
  start-page: 230292
  year: 2021
  ident: ref_12
  article-title: Direct measurement of current distribution in lithium-ion cells by magnetic field imaging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230292
– volume: 602
  start-page: 234
  year: 2022
  ident: ref_16
  article-title: Real-space visualization of intrinsic magnetic fields of an antiferromagnet
  publication-title: Nature
  doi: 10.1038/s41586-021-04254-z
– volume: 67
  start-page: 745
  year: 2018
  ident: ref_15
  article-title: Noninvasive Localization of IGBT Faults by High-Sensitivity Magnetic Probe with RF Stimulation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2789038
– volume: 11
  start-page: 14
  year: 2009
  ident: ref_1
  article-title: Magnetic Current Imaging in Failure Analysis
  publication-title: EDFA Tech. Artic.
  doi: 10.31399/asm.edfa.2009-4.p014
– volume: 17
  start-page: 014021
  year: 2022
  ident: ref_10
  article-title: Measurement and Simulation of the Magnetic Fields from a 555 Timer Integrated Circuit Using a Quantum Diamond Microscope and Finite-Element Analysis
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.014021
– volume: 11
  start-page: 075322
  year: 2021
  ident: ref_21
  article-title: The stability optimization algorithm of second-order magnetic gradient tensor
  publication-title: AIP Adv.
  doi: 10.1063/5.0056361
– ident: ref_18
  doi: 10.3390/s18020588
SSID ssj0023338
Score 2.4024892
Snippet Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5859
SubjectTerms closed-form inversion
Communication
current density inversion
Datasets
Fourier Analysis
Integrated circuits
Lithium
magnetic current imaging
Magnetic Fields
magnetic gradient tensor
Magnetic Resonance Imaging - methods
Magnetics
Noise
nondestructive testing
Phantoms, Imaging
Power
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAgPIRKJVBSHCJGq_HdnzcUkpBLKcW9WbZjgNIkEXb9MC_Z-xko41A4tJrbEf2eCYzLx6_AXilfI218VVZCXQlqmRzyJsyNFxoHqOq83HB6rM6u8CPl_Jyp9RXygkb6IEHwR3VIRpHw0xlUuyMHp3WgUCEx6oNbQ6NyOdtwdQItQQhr4FHSBCoP7qiKEZQYGxm3ieT9P_9Kd7xRfM8yR3Hc3oP7o4RI1sOM70Pt2L3AO7s8Ajuw6cl-5L_vpMysZFxiZ2k1PT-N_vwMxciYqtcK5odk9tq2LpjK_e1SzcY2ftNTvvq2TmNWG8ewsXpu_O3Z-VYJqEM5O37MgRNmCNwrkUMpnWVdEq2QWNbOYU6xIX33DS88aiCChTTRcJ5tEOtdMbxVjyCvW7dxSfAFL0ryBhNgy02QtFA5SsnkWzJReUKeLMVnw0jh3gqZfHDEpZIkraTpAt4OXX9NRBn_KvTcdqDqUPius4PSAPsqAH2fxpQwOu0gzZZJE0muPFiAS0pcVvZJUEirAW5hAIOtptsR1O9shRfKaxRSlHAi6mZjCydnLgurq9znzoxN8qqgMeDTkxzFhpRa84LqGfaMlvUvKX7_i0TeXMyEGUW1dObEMMzuL0gxU9pbAs8gL1-cx2fU8DU-8NsG38AOqgSmA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gvMAD4pvCQAEhwUu15uIkzRO6AbeBOJ42tLcqTdMNCdpx1z3w32PncuUqEK9NUjmxHduJ8zNjr3RdQmnrIi8kuBw06RyIJveNkEaEoMt4XbD8oo9P4dOZOksHbuuUVrndE-NG3fSezsgP0AxqKEEp-fbyZ05Vo-h2NZXQuM5uCLQ0lNJVLo7GgEti_LVBE5IY2h-s0ZeR6B7biQ2KUP1_b8g7FmmaLbljfhZ32O3kN_L5htF32bXQ3WO3dtAE77PPc_41nsGjSPGEu8TfU4L68It__BHLEfFlrBjND9F4Nbzv-NKdd_SOkR-tYvLXwE9wRL96wE4XH07eHeepWELu0eYPufcGIw8vhJHB29YVymnVegNt4TQYH2Z1LWwjmhq01x49u4DRHvKpVc460cqHbK_ru_CYcY3_8ioE20ALjdQ4UNeFU4Aa5YJ2GXuzXb7KJyRxKmjxvcKIgla6Glc6Yy_Hrpcb-Ix_dTokHowdCPE6fuhX51VSoKr0wToUH1tYiqGgBmeMxxnUULS-RaJeEwcr0kskxrv0vACnRAhX1RwDIyglGoaM7W-ZXCWFXVd_xCtjL8ZmVDW6P3Fd6K9in5LwG1WRsUcbmRhplgbAGCEyVk6kZTKpaUv37SLCeQtUE21nxZP_0_WU3aRS95SmNoN9tjesrsIzdIiG-nmU-t-7AApm
  priority: 102
  providerName: ProQuest
Title A Vectorial Current Density Imaging Method Based on Magnetic Gradient Tensor
URI https://www.ncbi.nlm.nih.gov/pubmed/37447711
https://www.proquest.com/docview/2836484553
https://www.proquest.com/docview/2838243750
https://pubmed.ncbi.nlm.nih.gov/PMC10346920
https://doaj.org/article/8ce9a37190974394b4a77c104b40fcfa
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71cYED4k2grAxCgksgXk_s-IDQLnRbEFsh1EV7ixzHKUglgXQr0X_P2JuNNqLikkM8jmzPTGa-2PkG4IUsMsx0kcSJQBOj9D6HvIxtyYXizsksbBfMT-TxAj8t0-UObGpsdgt4cS208_WkFu356z-_r96Rw7_1iJMg-5sLylEEpb16F_YpIClfyGCO_WbCWBAMW5MKDcUHoSgw9v_7Xt4KTMNDk1tRaHYbbnXpI5us9X0Hdlx9F25ukQreg88T9i18iifLYh39Evvgz6mvrtjHn6EqEZuHwtFsSjGsZE3N5uas9r8zsqM2nAFbsVPq0bT3YTE7PH1_HHc1E2JLoX8VW6sIgFjOlXBWVyZJjUwrq7BKjERl3bgouC55WaC00lKC5wj0kbqq1GjDK_EA9uqmdo-ASXqWTZ3TJVZYCkkdZZGYFMmxjJMmgleb5cttRyju61qc5wQs_Ern_UpH8LwX_bVm0bhOaOp10At44utwo2nP8s6P8sw6bciKdKI9lMICjVKWZlBgUtmKBvXSazD3BkODsab7y4Cm5Imu8gnhI8wExYcIDjZKzjdml1OyJTHDNBURPOubyeP8NoqpXXMZZDJP45gmETxc20Q_ZqEQleI8gmxgLYNJDVvqH98Dqzcnb5F6nDz-_7iewA1f8d6fVhvjAeyt2kv3lPKiVTGCXbVUdM1mRyPYnx6efPk6Ct8YRsEf_gK0IhAt
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1jidOckBoS9nu0t2etqi34DhOQYKk7KZC_VP8RsbeJGwE4tZrbEd-zPibscffALyUeYJJmgd-IFD5KK3OIS98XXARc2Nk4q4L5kdycowfT6KTLfjVvYWxYZXdnug26qLW9ox8l2BQYoJRJN6d_fBt1ih7u9ql0FiLxaG5-Eku2-rtdJ_W91UYjj8s3k_8NquArwkcG1_rmEx0zXksjE5LFURKRqWOsQyUxFibMM95WvAiR6mlJhPIkFtEAyojlSpeCvrvFbiKgpDcvkwfH_QOniB_b81eRIXB7opsJ0HmeDrAPJca4G8A2EDAYXTmBtyNb8HN1k5lo7Vg3YYtU92BGxvshXdhNmKf3Jk_iTBreZ7Yvg2Iby7Y9LtLf8TmLkM12yOwLFhdsbk6rey7SXawdMFmDVtQi3p5D44vZRrvw3ZVV-YhMEn_0pExaYElFkJSQ5kHKkLSYGWk8uBNN32ZbpnLbQKNbxl5MHams36mPXjRVz1b03X8q9KeXYO-gmXYdh_q5WnWKmyWaJMqEtc0SK3PhjmqONY0ghyDUpfUqdd2BTO7D1BntGqfM9CQLKNWNiJHDBNBQOTBTrfIWbtBrLI_4uzB876YVNve16jK1OeuTmL5IqPAgwdrmej7LGLEOObcg2QgLYNBDUuqr18cfTgntZRpGDz6f7-ewbXJYj7LZtOjw8dwPSTxtiFyIe7AdrM8N0_IGGvyp04DGHy-bJX7DZQSR8Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgELxEjWPHjh8QaunKytZqQhvaW3AcZyBBMtpMaP8afx3nNAmNQLztNf6Qfb7z3eXOvwN4IdKYxyoN_IBx7XPhZI7TzDcZZZJaK-I6XDBfiL1j_uEkOtmCX-1bGJdW2d6J9UWdlcb9Ix-iGhQ85lHEhnmTFnE4mb49--G7ClIu0tqW01izyL69-Inu2-rNbIJn_TIMp7tH7_b8psKAb1BRVr4xEs11Q6lk1qhcB5EWUW4kzwMtuDQ2TFOqMpqlXBhh0Byy6CLh5vJIK01zhvNegW3pvKIBbI93F4cfO3ePofe3xjJiTAXDFVpSDI1z1dOAdaGAv9XBhj7s52puKL_pTbjRWK1ktGazW7Bli9twfQPL8A4cjMinOgKADE0a1Ccycenx1QWZfa-LIZF5Xa-ajFF1ZqQsyFyfFu4VJXm_rFPPKnKEI8rlXTi-FELeg0FRFvYBEIFzmchalfGcZ0zgQJEGOuIoz9oK7cHrlnyJaXDMXTmNbwn6M47SSUdpD553Xc_W4B3_6jR2Z9B1cHjb9YdyeZo04pvExiqNzKsC5Tw4nnItpcEdpDzITY6LeuVOMHG3Ai7G6OZxA27J4WslI3TLeMxQLXmw0x5y0lwXq-QPc3vwrGtGQXfRG13Y8rzuEzv0yCjw4P6aJ7o1M8m5lJR6EPe4pbepfkvx9UsNJk5RSIUKg4f_X9dTuIrilhzMFvuP4FqI3O3y5UK-A4NqeW4fo2VWpU8aESDw-bKl7jcvWk1Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Vectorial+Current+Density+Imaging+Method+Based+on+Magnetic+Gradient+Tensor&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Yangjing&rft.au=Zhang%2C+Mingji&rft.au=Peng%2C+Chengyuan&rft.au=Zhang%2C+Zehuang&rft.date=2023-06-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=13&rft.spage=5859&rft_id=info:doi/10.3390%2Fs23135859&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon