A Vectorial Current Density Imaging Method Based on Magnetic Gradient Tensor
Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 13; p. 5859 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.06.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm2, probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23135859 |