Disguised Full-Duplex Covert Communications

Covert communications have arisen as an effective communications security measure that overcomes some of the limitations of cryptography and physical layer security. The main objective is to completely conceal from external devices the very existence of the link for exchanging confidential messages....

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 14; p. 6515
Main Author Moon, Jihwan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.07.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Covert communications have arisen as an effective communications security measure that overcomes some of the limitations of cryptography and physical layer security. The main objective is to completely conceal from external devices the very existence of the link for exchanging confidential messages. In this paper, we take a step further and consider a scenario in which a covert communications node disguises itself as another functional entity for even more covertness. To be specific, we study a system where a source node communicates with a seemingly receive-only destination node which, in fact, is full-duplex (FD) and covertly delivers critical messages to another hidden receiver while evading the surveillance. Our aim is to identify the achievable covert rate at the hidden receiver by optimizing the public data rate and the transmit power of the FD destination node subject to the worst-case detection error probability (DEP) of the warden. Closed-form solutions are provided, and we investigate the effects of various system parameters on the covert rate through numerical results, one of which reveals that applying more (less) destination transmit power achieves a higher covert rate when the source transmit power is low (high). Since our work provides a performance guideline from the information-theoretic point of view, we conclude this paper with a discussion on possible future research such as analyses with practical modulations and imperfect channel state information.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23146515