Real-Time Ocean Current Compensation for AUV Trajectory Tracking Control Using a Meta-Learning and Self-Adaptation Hybrid Approach
Autonomous underwater vehicles (AUVs) may deviate from their predetermined trajectory in underwater currents due to the complex effects of hydrodynamics on their maneuverability. Model-based control methods are commonly employed to address this problem, but they suffer from issues related to the tim...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 14; p. 6417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.07.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Autonomous underwater vehicles (AUVs) may deviate from their predetermined trajectory in underwater currents due to the complex effects of hydrodynamics on their maneuverability. Model-based control methods are commonly employed to address this problem, but they suffer from issues related to the time-variability of parameters and the inaccuracy of mathematical models. To improve these, a meta-learning and self-adaptation hybrid approach is proposed in this paper to enable an underwater robot to adapt to ocean currents. Instead of using a traditional complex mathematical model, a deep neural network (DNN) serving as the basis function is trained to learn a high-order hydrodynamic model offline; then, a set of linear coefficients is adjusted dynamically by an adaptive law online. By conjoining these two strategies for real-time thrust compensation, the proposed method leverages the potent representational capacity of DNN along with the rapid response of adaptive control. This combination achieves a significant enhancement in tracking performance compared to alternative controllers, as observed in simulations. These findings substantiate that the AUV can adeptly adapt to new speeds of ocean currents. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23146417 |