Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review
This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit...
Saved in:
Published in | Molecular & cellular proteomics Vol. 20; p. 100025 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2021
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), online separations, and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.
[Display omitted]
•Online separation with tandem mass spectrometry can sequence glycosaminoglycans.•Electronic excitation increases GAG sequence coverage over collisional activation.•This approach is useful for analysis of biological samples and pharmaceuticals.
Glycosaminoglycans (GAGs) participate in a variety of biological functions and have a multitude of medicinal properties. Due to their non template driven biosynthesis, GAGs are produced as nonuniform complex mixtures. Mass spectrometry paired with on-line separation techniques has been utilized to determine the composition of these complex mixtures. Advances in tandem mass spectrometry have also made determining sequence information such as sulfation location and C-5 epimerization possible. This review covers recent developments in the analysis of GAGs using mass spectrometry. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 1535-9476 1535-9484 1535-9484 |
DOI: | 10.1074/mcp.R120.002267 |