EM and SAGE Algorithms for DOA Estimation in the Presence of Unknown Uniform Noise

The existing expectation maximization (EM) and space-alternating generalized EM (SAGE) algorithms are only applied to direction of arrival (DOA) estimation in known noise. In this paper, the two algorithms are designed for DOA estimation in unknown uniform noise. Both the deterministic and random si...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 10; p. 4811
Main Authors Gong, Ming-Yan, Lyu, Bin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.05.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The existing expectation maximization (EM) and space-alternating generalized EM (SAGE) algorithms are only applied to direction of arrival (DOA) estimation in known noise. In this paper, the two algorithms are designed for DOA estimation in unknown uniform noise. Both the deterministic and random signal models are considered. In addition, a new modified EM (MEM) algorithm applicable to the noise assumption is also proposed. Next, these EM-type algorithms are improved to ensure the stability when the powers of sources are not equal. After being improved, simulation results illustrate that the EM algorithm has similar convergence with the MEM algorithm, the SAGE algorithm outperforms the EM and MEM algorithms for the deterministic signal model, and the SAGE algorithm cannot always outperform the EM and MEM algorithms for the random signal model. Furthermore, simulation results show that processing the same snapshots from the random signal model, the SAGE algorithm for the deterministic signal model can require the fewest computations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23104811