Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals

Although Neandertal sequences that persist in the genomes of modern humans have been identified in Eurasians, comparable studies in people whose ancestors hybridized with both Neandertals and Denisovans are lacking. We developed an approach to identify DNA inherited from multiple archaic hominin anc...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 352; no. 6282; pp. 235 - 239
Main Authors Vernot, Benjamin, Tucci, Serena, Kelso, Janet, Schraiber, Joshua G., Wolf, Aaron B., Gittelman, Rachel M., Dannemann, Michael, Grote, Steffi, McCoy, Rajiv C., Norton, Heather, Scheinfeldt, Laura B., Merriwether, David A., Koki, George, Friedlaender, Jonathan S., Wakefield, Jon, Pääbo, Svante, Akey, Joshua M.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 08.04.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although Neandertal sequences that persist in the genomes of modern humans have been identified in Eurasians, comparable studies in people whose ancestors hybridized with both Neandertals and Denisovans are lacking. We developed an approach to identify DNA inherited from multiple archaic hominin ancestors and applied it to whole-genome sequences from 1523 geographically diverse individuals, including 35 previously unknown Island Melanesian genomes. In aggregate, we recovered 1.34 gigabases and 303 megabases of the Neandertal and Denisovan genome, respectively. We use these maps of archaic sequences to show that Neandertal admixture occurred multiple times in different non-African populations, characterize genomic regions that are significantly depleted of archaic sequences, and identify signatures of adaptive introgression.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0036-8075
1095-9203
1095-9203
DOI:10.1126/science.aad9416