Real-Time Fire Smoke Detection Method Combining a Self-Attention Mechanism and Radial Multi-Scale Feature Connection

Fire remains a pressing issue that requires urgent attention. Due to its uncontrollable and unpredictable nature, it can easily trigger chain reactions and increase the difficulty of extinguishing, posing a significant threat to people's lives and property. The effectiveness of traditional phot...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 6; p. 3358
Main Authors Jin, Chuan, Zheng, Anqi, Wu, Zhaoying, Tong, Changqing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fire remains a pressing issue that requires urgent attention. Due to its uncontrollable and unpredictable nature, it can easily trigger chain reactions and increase the difficulty of extinguishing, posing a significant threat to people's lives and property. The effectiveness of traditional photoelectric- or ionization-based detectors is inhibited when detecting fire smoke due to the variable shape, characteristics, and scale of the detected objects and the small size of the fire source in the early stages. Additionally, the uneven distribution of fire and smoke and the complexity and variety of the surroundings in which they occur contribute to inconspicuous pixel-level-based feature information, making identification difficult. We propose a real-time fire smoke detection algorithm based on multi-scale feature information and an attention mechanism. Firstly, the feature information layers extracted from the network are fused into a radial connection to enhance the semantic and location information of the features. Secondly, to address the challenge of recognizing harsh fire sources, we designed a permutation self-attention mechanism to concentrate on features in channel and spatial directions to gather contextual information as accurately as possible. Thirdly, we constructed a new feature extraction module to increase the detection efficiency of the network while retaining feature information. Finally, we propose a cross-grid sample matching approach and a weighted decay loss function to handle the issue of imbalanced samples. Our model achieves the best detection results compared to standard detection methods using a handcrafted fire smoke detection dataset, with APval reaching 62.5%, APSval reaching 58.5%, and FPS reaching 113.6.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23063358