Three-Dimensional Transesophageal Echocardiography for Perioperative Right Ventricular Assessment

Background In high-risk cardiac procedures, dynamic analysis of right ventricular (RV) performance is desirable, but the geometric complexity of the RV limits the applicability of current two-dimensional echocardiographic imaging techniques. This study aimed to evaluate the utility of three-dimensio...

Full description

Saved in:
Bibliographic Details
Published inThe Annals of thoracic surgery Vol. 94; no. 2; pp. 468 - 474
Main Authors Karhausen, Joern, MD, Dudaryk, Roman, MD, Phillips-Bute, Barbara, PhD, Rivera, J. Daniel, RCS, de Lange, Fellery, MD, PhD, Milano, Carmelo A., MD, Swaminathan, Madhav, MD, Mackensen, G. Burkhard, MD, PhD
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.08.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background In high-risk cardiac procedures, dynamic analysis of right ventricular (RV) performance is desirable, but the geometric complexity of the RV limits the applicability of current two-dimensional echocardiographic imaging techniques. This study aimed to evaluate the utility of three-dimensional transesophageal echocardiography (TEE) for the perioperative assessment of RV function and dimensions. Methods Patients undergoing cardiac surgical procedures with complete TEE examinations were identified and reviewed according to current guidelines to exclude patients with significant coexisting valvular regurgitation. Full-volume, three-dimensional datasets were analyzed by two independent investigators using stand-alone software, and left ventricular and RV dimensions were recorded. Results Datasets from 50 patients undergoing cardiac surgical procedures were evaluated for this study. The mean RV volume was 111.7 mL (range, 37.5 to 349.7 mL) at end diastole and 67.6 mL (range, 25.5 to 274.4 mL) at end systole. Intraobserver reliability was 0.93 and 0.90 for end diastolic and 0.77 and 0.87 for end systolic volumes. The interobserver reliability for RV volumes was 0.83 at end diastole and 0.86 at end systole. The mean stroke volume was 43.6 mL (range, 12 to 111.2 mL) for the RV and 49.1 mL (range, 19.9 to 102.8 mL) for the left ventricle; the correlation coefficient between the two was 0.85. Conclusions Three-dimensional TEE volumetric measurements were reproducible across a wide range of RV dimensions. As postulated by the continuity principle, stroke volume measurements between both ventricles correlated well, supporting the validity of this approach. Therefore, our work provides preliminary evidence that three-dimensional TEE offers reproducible information about RV function and size in the dynamic and complex perioperative setting of cardiac surgical procedures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-4975
1552-6259
DOI:10.1016/j.athoracsur.2012.03.073