Robust Stabilization of Linear Time-Delay Systems under Denial-of-Service Attacks

This research examines new methods for stabilizing linear time-delay systems that are subject to denial-of-service (DoS) attacks. The study takes into account the different effects that a DoS attack can have on the system, specifically delay-independent and -dependent behaviour. The traditional prop...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 13; p. 5773
Main Authors Saif, Abdul-Wahid A., El-Ferik, Sami, Elkhider, Siddig M.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research examines new methods for stabilizing linear time-delay systems that are subject to denial-of-service (DoS) attacks. The study takes into account the different effects that a DoS attack can have on the system, specifically delay-independent and -dependent behaviour. The traditional proportional-integral-derivative (PID) acts on the error signal, which is the difference between the reference input and the measured output. The approach in this paper uses what we call the PID state feedback strategy, where the controller acts on the state signal. Our proposed strategy uses the Lyapunov–Krasovskii functional (LKF) to develop new linear matrix inequalities (LMIs). The study considers two scenarios where the time delay is either a continuous bounded function or a differentiable and time-varying function that falls within certain bounds. In both cases, new LMIs are derived to find the PID-like state feedback gains that will ensure robust stabilization. The findings are illustrated with numerical examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23135773