Mutation in Glycerol-3-Phosphate Dehydrogenase 1–Like Gene ( GPD1-L ) Decreases Cardiac Na + Current and Causes Inherited Arrhythmias

Background— Brugada syndrome is a rare, autosomal-dominant, male-predominant form of idiopathic ventricular fibrillation characterized by a right bundle-branch block and ST elevation in the right precordial leads of the surface ECG. Mutations in the cardiac Na + channel SCN5A on chromosome 3p21 caus...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 116; no. 20; pp. 2260 - 2268
Main Authors London, Barry, Michalec, Michael, Mehdi, Haider, Zhu, Xiaodong, Kerchner, Laurie, Sanyal, Shamarendra, Viswanathan, Prakash C., Pfahnl, Arnold E., Shang, Lijuan L., Madhusudanan, Mohan, Baty, Catherine J., Lagana, Stephen, Aleong, Ryan, Gutmann, Rebecca, Ackerman, Michael J., McNamara, Dennis M., Weiss, Raul, Dudley, Samuel C.
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 13.11.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background— Brugada syndrome is a rare, autosomal-dominant, male-predominant form of idiopathic ventricular fibrillation characterized by a right bundle-branch block and ST elevation in the right precordial leads of the surface ECG. Mutations in the cardiac Na + channel SCN5A on chromosome 3p21 cause ≈20% of the cases of Brugada syndrome; most mutations decrease inward Na + current, some by preventing trafficking of the channels to the surface membrane. We previously used positional cloning to identify a new locus on chromosome 3p24 in a large family with Brugada syndrome and excluded SCN5A as a candidate gene. Methods and Results— We used direct sequencing to identify a mutation (A280V) in a conserved amino acid of the glycerol-3-phosphate dehydrogenase 1–like ( GPD1-L ) gene. The mutation was present in all affected individuals and absent in >500 control subjects. GPD1-L RNA and protein are abundant in the heart. Compared with wild-type GPD1-L, coexpression of A280V GPD1-L with SCN5A in HEK cells reduced inward Na + currents by ≈50% ( P <0.005). Wild-type GPD1-L localized near the cell surface to a greater extent than A280V GPD1-L. Coexpression of A280V GPD1-L with SCN5A reduced SCN5A cell surface expression by 31±5% ( P =0.01). Conclusions— GPD1-L is a novel gene that may affect trafficking of the cardiac Na + channel to the cell surface. A GPD1-L mutation decreases SCN5A surface membrane expression, reduces inward Na + current, and causes Brugada syndrome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-7322
1524-4539
1524-4539
DOI:10.1161/CIRCULATIONAHA.107.703330