Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering
[Display omitted] •The degradation behavior of PCL and PCL–CoHA membranes was analyzed by long-term immersion (6 months).•Accelerate the degradation of PCL membrane by added CoHA.•PCL–CoHA membrane favors MG63 cell attachment, proliferation and differentiation.•PCL–CoHA membrane significantly inhibi...
Saved in:
Published in | Dental materials Vol. 35; no. 5; pp. 751 - 762 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.05.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
•The degradation behavior of PCL and PCL–CoHA membranes was analyzed by long-term immersion (6 months).•Accelerate the degradation of PCL membrane by added CoHA.•PCL–CoHA membrane favors MG63 cell attachment, proliferation and differentiation.•PCL–CoHA membrane significantly inhibited the growth of E. coli.•PCL–CoHA membrane scavenges free radicals by continuously releasing cobalt ions.
Currently, infections due to foreign-body reactions caused by bacteria or implant materials at the wound site are one of the major reasons for the failure of guided tissue regeneration (GTR) and guided bone regeneration (GBR) in clinical applications. The purpose of this study was to develop regeneration membranes with localized cobalt ion release to reduce infection and inflammation by polycaprolactone (PCL)/cobalt-substituted hydroxyapatite (CoHA).
The PCL composite membrane containing 20 wt% CoHA powders was prepared by solvent casting. The surface morphology, crystal structure, chemical composition and thermal properties of PCL composite membranes were characterized. The biocompatibility, osteogenic differentiation and antibacterial properties of composite membrane were also investigated. Then, in biodegradability was assessed by immersing phosphate buffer solution (PBS) for 6 months.
Physicochemical analyses revealed that CoHA is evenly mixed in the membranes and assistance reduce the crystallinity of PCL for getting more degradation amounts than PCL membrane. Osteoblast cells culture on the membrane showed that the CoHA significantly increases cell proliferation and found the calcium deposition production increased over 90% compared with PCL after 7 days of culture. A good antibacterial effect was achieved by the addition of CoHA powder. The results were confirmed by 2.4 times reduction of proliferation of Escherichia coli (E. coli) seeded on the composite membrane after 24 h. Immersing in PBS for 6 months indicated that PCL–CoHA composite membrane has improved biodegradation and can continuously remove free radicals to reduce the inflammatory response.
The PCL–CoHA composite membrane with suitable releasing of cobalt ion can be considered as a potential choice for bone tissue regeneration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0109-5641 1879-0097 1879-0097 |
DOI: | 10.1016/j.dental.2019.02.023 |