Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors

Graphene oxide (GO) was reduced by a rapid, effective and eco-friendly electrochemical method of repetitive cathodic cyclic potential cycling, without using any reducing reagents. The electrochemically reduced graphene oxide (ERGO) was characterized by UV–vis, EIS and zeta-potential measurements. Mo...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 51; pp. 36 - 44
Main Authors Yang, Jiang, Gunasekaran, Sundaram
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene oxide (GO) was reduced by a rapid, effective and eco-friendly electrochemical method of repetitive cathodic cyclic potential cycling, without using any reducing reagents. The electrochemically reduced graphene oxide (ERGO) was characterized by UV–vis, EIS and zeta-potential measurements. Most of the oxygen functional groups in ERGO were successfully removed resulting in smaller charge transfer resistance. However, some electrochemically stable residuals still remained, enabling ERGO to facilitate electrolyte penetration and pseudocapacitance. Since ERGO was readily stabilized by cathodic potential cycling, it exhibited an outstanding stability in cycle life, nearly with no capacitive loss from the second cycle on. A specific capacitance of 223.6Fg−1 was achieved at 5mVs−1, which makes the ERGO a competitive material for electrochemical energy storage.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2012.08.003