Tone-Dependent Waterfall Behavior During Venous Pressure Elevation in Isolated Canine Hearts

We examined the “vascular waterfall” hypothesis, which proposes that coronary flow is unaffected by elevations in outflow pressure until the latter reaches a critical threshold level, in 29 isolated canine hearts. In fibrillating hearts vasodilated with adenosine or carbocromen, coronary flow and th...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 68; no. 2; pp. 392 - 401
Main Authors Farhi, Eli R, Klocke, Francis J, Mates, Robert E, Kumar, Krishna, Judd, Robert M, Canty, John M, Satoh, Shoichi, Sekovski, Blaze
Format Journal Article
LanguageEnglish
Published Hagerstown, MD American Heart Association, Inc 01.02.1991
Lippincott
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We examined the “vascular waterfall” hypothesis, which proposes that coronary flow is unaffected by elevations in outflow pressure until the latter reaches a critical threshold level, in 29 isolated canine hearts. In fibrillating hearts vasodilated with adenosine or carbocromen, coronary flow and the coronary pressure-flow relation were not affected by changes in great cardiac vein pressure (PGCV) below a threshold value of 11±0.9 (mean±SEM) mm Hg. Further elevations of PGCV reduced flow and shifted the pressure-flow relation to the right, increasing its pressure-axis intercept (Pf=0). When vasomotor tone was augmented with vasopressin, threshold PGCV increased to 25±2.7 mm Hg (p<0.001). Once again, the pressure-flow relation was unaffected by changes in PGCV below the threshold value and shifted to the right when this value was exceeded. The amount by which spontaneous values of Pf=0 exceeded threshold values of PGCV was greater when vasomotor tone was augmented than during vasodilation. Pf=0 continued to exceed PGCV when the latter was raised above the threshold level. Both Pf=0 and threshold values of PGCV were less during a long diastole than during ventricular fibrillation. We reached the following conclusions. 1) During changes in PGCV below a threshold value, the coronary circulation exhibits traditional waterfall behavior. 2) The threshold pressure for altering waterfall behavior is affected by vascular tone and mechanical activity. 3) Pf=0 remains above PGCV when the latter is increased above the threshold value needed to alter flow. (Circulation Research 1991;68:392–401)
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-7330
1524-4571
DOI:10.1161/01.res.68.2.392