Epithelial–mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis

The lineage transition between epithelium and mesenchyme is a process known as epithelial–mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and dis...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 232; no. 12; pp. 3261 - 3272
Main Authors Chen, Tong, You, Yanan, Jiang, Hua, Wang, Zack Z.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lineage transition between epithelium and mesenchyme is a process known as epithelial–mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal–epithelial transition (MET), also play important roles in stem cell differentiation and de‐differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future. In this review, we discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normals and in diseases.
AbstractList The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.
The lineage transition between epithelium and mesenchyme is a process known as epithelial–mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal–epithelial transition (MET), also play important roles in stem cell differentiation and de‐differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future. In this review, we discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normals and in diseases.
Author Wang, Zack Z.
Chen, Tong
You, Yanan
Jiang, Hua
AuthorAffiliation 3 Johns Hopkins University School of Medicine, Division of Hematology, Baltimore, MD 21205, United States
1 Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
2 Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
AuthorAffiliation_xml – name: 2 Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
– name: 1 Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
– name: 3 Johns Hopkins University School of Medicine, Division of Hematology, Baltimore, MD 21205, United States
Author_xml – sequence: 1
  givenname: Tong
  surname: Chen
  fullname: Chen, Tong
  email: chentong@fudan.edu.cn
  organization: Fudan University
– sequence: 2
  givenname: Yanan
  surname: You
  fullname: You, Yanan
  organization: Fudan University
– sequence: 3
  givenname: Hua
  surname: Jiang
  fullname: Jiang, Hua
  organization: Fudan University
– sequence: 4
  givenname: Zack Z.
  orcidid: 0000-0002-6702-2648
  surname: Wang
  fullname: Wang, Zack Z.
  email: zack.wang@jhmi.edu
  organization: Johns Hopkins University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28079253$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OGzEUha2KqgTooi9QWeqmSATs8Xgm7qISitI_gcoC1pbHvpM48tiDPaHKjnfgDXmSOiRUbdWuLPme892fc4D2fPCA0BtKTikhxdlS96cFr0X9Ao0oEfW4rHixh0a5RseCl3QfHaS0JIQIwdgrtF9MSC0KzkboftbbYQHOKvd4_9BBAq8X6045PETlkx1s8Pj97PL6-AM-x40NLsytzuU-Bg0pYetx9mMDd-BC34EfTnAaoMManMPGti3E_GnVhnSClTd4WHUh2jl4SDYdoZetcgle795DdPNpdj39Mr74_vnr9PxirPlmo6LUBdDSTJpGFKI0HDhhDQFWTYypdKnUxGhFqpYqU1eigtrwgnHVGKa5bht2iD5uuf2q6cDoPFNUTvbRdiquZVBW_lnxdiHn4U5yTuqaswx4twPEcLuCNMhlWEWfZ5ZUMCIo46TMqre_t_nFf754FpxtBTqGlCK0Utvh6Ti5q3WSErnJVOZM5VOm2XH8l-MZ-i_tjv7DOlj_Xyi_Ta-2jp_cALTx
CitedBy_id crossref_primary_10_1002_ame2_12491
crossref_primary_10_2147_OTT_S260793
crossref_primary_10_3748_wjg_v26_i6_562
crossref_primary_10_1080_15384047_2020_1832429
crossref_primary_10_1186_s12886_023_03202_x
crossref_primary_10_1093_stmcls_sxac012
crossref_primary_10_1111_jre_12691
crossref_primary_10_1186_s12885_024_12549_3
crossref_primary_10_3390_biom11081074
crossref_primary_10_1111_jcmm_15911
crossref_primary_10_1021_jacs_4c05665
crossref_primary_10_31083_j_fbl2707207
crossref_primary_10_1007_s43188_020_00067_w
crossref_primary_10_3390_cells9030538
crossref_primary_10_3390_ddc2030031
crossref_primary_10_1038_s41598_018_36551_5
crossref_primary_10_1016_j_tice_2022_101997
crossref_primary_10_1038_s41598_021_97347_8
crossref_primary_10_1007_s43032_023_01368_9
crossref_primary_10_2147_IJGM_S489059
crossref_primary_10_3390_ijms21218307
crossref_primary_10_1080_21655979_2022_2072619
crossref_primary_10_1016_j_gene_2024_148729
crossref_primary_10_1186_s13048_020_00726_4
crossref_primary_10_1080_21655979_2022_2036898
crossref_primary_10_1002_tox_23296
crossref_primary_10_1002_cbf_3554
crossref_primary_10_1177_10668969211070180
crossref_primary_10_1038_s41598_023_40404_1
crossref_primary_10_3390_cells13201690
crossref_primary_10_1042_BSR20194284
crossref_primary_10_1093_molehr_gaac013
crossref_primary_10_1002_jcp_31104
crossref_primary_10_1002_ptr_7680
crossref_primary_10_3390_ijms222111719
crossref_primary_10_1016_j_reprotox_2019_01_008
crossref_primary_10_1155_cplx_9007322
crossref_primary_10_1016_j_asd_2018_01_002
crossref_primary_10_1002_jbio_201900178
crossref_primary_10_3389_fmolb_2024_1404319
crossref_primary_10_3390_cancers12092508
crossref_primary_10_1093_jrr_rry050
crossref_primary_10_1002_2211_5463_13297
crossref_primary_10_1016_j_biocel_2017_12_002
crossref_primary_10_1186_s12967_023_04356_4
crossref_primary_10_3892_ol_2020_11484
crossref_primary_10_1016_j_semcdb_2021_11_020
crossref_primary_10_3389_fbioe_2021_649288
crossref_primary_10_1007_s10142_023_01088_y
crossref_primary_10_1042_BSR20201578
crossref_primary_10_3390_biomedicines10123283
crossref_primary_10_1002_jcp_27199
crossref_primary_10_2174_1568009622666220307105107
crossref_primary_10_1038_s41598_019_55867_4
crossref_primary_10_3390_cells11091515
crossref_primary_10_3390_ijms23147782
crossref_primary_10_1186_s12935_021_01880_5
crossref_primary_10_1007_s11033_022_07976_z
crossref_primary_10_1177_15353702231182215
crossref_primary_10_3390_biomedicines11020618
crossref_primary_10_1166_sam_2022_4252
crossref_primary_10_1016_j_ejmech_2022_114416
crossref_primary_10_1007_s12033_024_01188_5
crossref_primary_10_1016_j_ijbiomac_2018_12_105
crossref_primary_10_1039_C9CC08391J
crossref_primary_10_1038_s41598_024_52341_8
crossref_primary_10_1042_BSR20170658
crossref_primary_10_1590_1414_431x20209288
crossref_primary_10_18632_oncotarget_27637
crossref_primary_10_1016_j_biopha_2018_06_114
crossref_primary_10_1021_acs_analchem_4c00042
crossref_primary_10_1007_s11064_018_2478_y
crossref_primary_10_1007_s40883_020_00180_0
crossref_primary_10_1038_s41598_018_31409_2
crossref_primary_10_3389_fonc_2022_965684
crossref_primary_10_1016_j_modpat_2022_100082
crossref_primary_10_1186_s12935_021_02326_8
crossref_primary_10_1155_2024_8645534
crossref_primary_10_3390_ijms23126852
crossref_primary_10_1016_j_bbrc_2019_08_042
crossref_primary_10_1097_CAD_0000000000001044
crossref_primary_10_3390_cells11203312
crossref_primary_10_3390_cancers14174225
crossref_primary_10_7555_JBR_37_20230248
crossref_primary_10_1371_journal_pone_0249775
crossref_primary_10_23888_PAVLOVJ2018264538_546
crossref_primary_10_1016_j_phrs_2020_105179
crossref_primary_10_1016_j_semcancer_2022_08_011
crossref_primary_10_3390_md19110594
crossref_primary_10_1016_j_procbio_2023_11_006
crossref_primary_10_18632_aging_202784
crossref_primary_10_1186_s12885_022_09229_5
crossref_primary_10_1016_j_ecoenv_2023_114892
crossref_primary_10_3389_fcell_2020_583226
crossref_primary_10_1038_s41598_023_28480_9
crossref_primary_10_1155_2021_8851763
crossref_primary_10_2147_CMAR_S287575
crossref_primary_10_1089_dna_2020_5469
crossref_primary_10_1007_s12010_023_04572_0
crossref_primary_10_1002_cbin_11896
crossref_primary_10_17776_csj_1062126
crossref_primary_10_1007_s12013_023_01156_x
crossref_primary_10_1016_j_lfs_2021_119035
crossref_primary_10_1007_s12010_023_04444_7
crossref_primary_10_1007_s12020_020_02466_3
crossref_primary_10_2485_jhtb_32_21
crossref_primary_10_1007_s12672_021_00417_6
crossref_primary_10_1111_jop_13111
crossref_primary_10_3389_fonc_2022_842205
crossref_primary_10_1007_s12015_021_10258_z
crossref_primary_10_1007_s13402_021_00622_z
crossref_primary_10_1002_biot_202300364
crossref_primary_10_1007_s12272_019_01181_6
crossref_primary_10_1097_CAD_0000000000000786
crossref_primary_10_3390_ijms241512423
crossref_primary_10_2217_fon_2023_0907
crossref_primary_10_1093_toxsci_kfx269
crossref_primary_10_1186_s12951_021_01083_0
crossref_primary_10_3389_fonc_2022_965628
crossref_primary_10_3390_biomedicines11071894
crossref_primary_10_1186_s13045_022_01292_6
crossref_primary_10_1186_s40364_021_00345_1
crossref_primary_10_1016_j_bbrc_2018_10_137
crossref_primary_10_3389_fchem_2020_00495
crossref_primary_10_3892_mmr_2019_10871
crossref_primary_10_1016_j_advms_2025_01_005
crossref_primary_10_1016_j_yexmp_2022_104755
crossref_primary_10_1038_s41388_018_0237_9
crossref_primary_10_1186_s12943_019_1090_3
crossref_primary_10_3389_fphar_2021_821567
crossref_primary_10_1186_s12943_024_02066_z
crossref_primary_10_3390_biom10121676
crossref_primary_10_1007_s12672_024_00867_8
crossref_primary_10_1186_s12958_021_00817_x
crossref_primary_10_1002_stem_2866
crossref_primary_10_1021_acsami_1c03740
crossref_primary_10_1042_BSR20190159
crossref_primary_10_1515_med_2022_0448
crossref_primary_10_1016_j_tice_2021_101707
crossref_primary_10_1039_C9RA01031A
crossref_primary_10_3892_etm_2019_7206
crossref_primary_10_1016_j_jff_2022_105262
crossref_primary_10_1016_j_ygeno_2019_05_002
crossref_primary_10_3390_medicines7040019
crossref_primary_10_1038_s41379_019_0409_3
crossref_primary_10_3390_ijms251910803
crossref_primary_10_1038_s41598_019_48081_9
crossref_primary_10_1080_15384101_2019_1635868
crossref_primary_10_3389_fcvm_2024_1333265
crossref_primary_10_1038_s41540_024_00422_9
crossref_primary_10_1186_s12885_023_11724_2
crossref_primary_10_1111_jcmm_18097
crossref_primary_10_3390_cells9041055
crossref_primary_10_1016_j_jogoh_2022_102349
crossref_primary_10_3389_fonc_2023_1202656
crossref_primary_10_1016_j_semcdb_2018_09_006
crossref_primary_10_1007_s10585_022_10172_9
crossref_primary_10_1186_s12935_019_0862_6
crossref_primary_10_3892_etm_2019_7896
crossref_primary_10_1016_j_bbcan_2022_188718
crossref_primary_10_3389_fimmu_2020_01628
crossref_primary_10_3389_fcell_2023_1291506
crossref_primary_10_1016_j_exer_2019_03_002
crossref_primary_10_3892_ijo_2020_5008
crossref_primary_10_1186_s12935_022_02598_8
crossref_primary_10_1002_jcb_26196
crossref_primary_10_1007_s13258_021_01170_4
crossref_primary_10_1002_cbin_11405
crossref_primary_10_1016_j_prp_2024_155264
crossref_primary_10_3390_cells10051219
crossref_primary_10_1016_j_tice_2021_101721
crossref_primary_10_3390_biom10121653
crossref_primary_10_1002_jmv_27246
crossref_primary_10_1016_j_jphs_2022_07_001
crossref_primary_10_1016_j_fct_2018_09_023
crossref_primary_10_1016_j_yexcr_2020_112012
crossref_primary_10_3892_ol_2024_14767
crossref_primary_10_1016_j_biocel_2019_105644
crossref_primary_10_2147_OTT_S265847
crossref_primary_10_3389_fmicb_2024_1490007
crossref_primary_10_3390_ijms222413358
crossref_primary_10_1159_000512277
crossref_primary_10_3389_fonc_2023_1200619
crossref_primary_10_3390_cells9061441
crossref_primary_10_1186_s13045_022_01347_8
crossref_primary_10_3389_fcvm_2024_1400643
crossref_primary_10_3390_ijms20082042
crossref_primary_10_3892_or_2023_8598
crossref_primary_10_1016_j_isci_2024_109827
crossref_primary_10_3892_mmr_2019_10322
crossref_primary_10_1155_2022_5383146
crossref_primary_10_1016_j_mod_2017_08_002
crossref_primary_10_4196_kjpp_2024_28_3_197
crossref_primary_10_1016_j_toxlet_2020_09_008
crossref_primary_10_1016_j_bbadis_2023_166925
crossref_primary_10_1002_jcp_27489
crossref_primary_10_1002_ptr_7978
crossref_primary_10_1021_acs_chemrestox_9b00089
crossref_primary_10_3389_fonc_2020_00920
crossref_primary_10_1007_s13402_021_00642_9
crossref_primary_10_3389_fmolb_2021_600373
crossref_primary_10_1186_s13287_020_01933_y
crossref_primary_10_2147_CCID_S345371
crossref_primary_10_1002_jcp_28472
crossref_primary_10_1016_j_intimp_2024_111944
crossref_primary_10_1111_jcmm_15409
crossref_primary_10_1016_j_jddst_2024_106220
crossref_primary_10_1007_s12033_021_00443_3
crossref_primary_10_3390_jpm13081253
crossref_primary_10_1073_pnas_2216799120
crossref_primary_10_3390_ijms252413523
crossref_primary_10_1016_j_heliyon_2024_e24464
crossref_primary_10_1155_2018_4837370
crossref_primary_10_1016_j_omto_2019_08_006
crossref_primary_10_3390_cancers14153685
crossref_primary_10_18632_aging_205317
crossref_primary_10_1093_nsr_nwae471
crossref_primary_10_3389_fonc_2019_00461
crossref_primary_10_3390_biomedicines12030577
crossref_primary_10_1093_burnst_tkz007
crossref_primary_10_1136_jclinpath_2020_206500
crossref_primary_10_3390_jcm13154409
crossref_primary_10_1007_s43188_022_00127_3
crossref_primary_10_1016_j_semcancer_2018_02_004
crossref_primary_10_1111_cas_14193
crossref_primary_10_1038_s41420_021_00667_x
crossref_primary_10_3892_etm_2021_10452
crossref_primary_10_1002_smll_202207940
crossref_primary_10_1111_age_12915
crossref_primary_10_1016_j_jprot_2019_103491
crossref_primary_10_1002_advs_202103470
crossref_primary_10_3390_life15030396
crossref_primary_10_3390_antiox13080902
crossref_primary_10_1016_j_prp_2023_154481
crossref_primary_10_1042_BSR20201854
crossref_primary_10_1155_2022_9705948
crossref_primary_10_18632_oncotarget_21021
crossref_primary_10_3389_fphar_2024_1504556
crossref_primary_10_1007_s12013_023_01179_4
crossref_primary_10_1016_j_cellsig_2021_109932
crossref_primary_10_1186_s43094_021_00246_y
crossref_primary_10_3390_cells10092276
crossref_primary_10_1016_j_ajhg_2018_02_002
crossref_primary_10_3390_cancers13225639
crossref_primary_10_24070_bjvp_1983_0246_v16i2p89_95
crossref_primary_10_3892_ol_2018_7880
crossref_primary_10_1186_s13046_018_0784_5
crossref_primary_10_32604_or_2024_043423
crossref_primary_10_5306_wjco_v16_i3_94091
crossref_primary_10_1016_j_scr_2022_102936
crossref_primary_10_1016_j_tice_2022_101937
crossref_primary_10_1016_j_tice_2024_102429
crossref_primary_10_18632_aging_203463
crossref_primary_10_3389_fncel_2019_00381
crossref_primary_10_3390_ijerph19148743
crossref_primary_10_1038_s41419_021_04145_1
crossref_primary_10_1096_fj_201900609R
crossref_primary_10_3390_ijms24021221
crossref_primary_10_1039_D3NR01482G
crossref_primary_10_3892_ijo_2017_4224
crossref_primary_10_1080_02713683_2020_1792508
crossref_primary_10_1002_cbdv_202402549
crossref_primary_10_1016_j_suronc_2017_09_008
crossref_primary_10_53011_JMRO_2022_01_01
crossref_primary_10_1002_1873_3468_14000
crossref_primary_10_3390_ijms24043500
crossref_primary_10_1080_10799893_2020_1805629
crossref_primary_10_1038_s41564_017_0056_8
crossref_primary_10_1097_CAD_0000000000001205
crossref_primary_10_1007_s13577_022_00729_x
crossref_primary_10_1063_5_0033710
crossref_primary_10_1016_j_clinre_2020_101587
crossref_primary_10_1007_s00204_024_03700_x
crossref_primary_10_1016_j_heliyon_2024_e39895
crossref_primary_10_1007_s12195_021_00694_9
crossref_primary_10_3390_cancers12082074
crossref_primary_10_1016_j_ebiom_2018_12_017
crossref_primary_10_1007_s11033_020_05918_1
crossref_primary_10_3390_jcm12020466
crossref_primary_10_3389_fphar_2021_709324
crossref_primary_10_1093_stcltm_szad028
crossref_primary_10_1155_2022_7379157
crossref_primary_10_1007_s10555_023_10147_6
crossref_primary_10_1155_2021_2282916
crossref_primary_10_3390_cancers17030529
crossref_primary_10_3390_ijms20143567
crossref_primary_10_1007_s12032_024_02585_1
crossref_primary_10_3390_ijms20164028
crossref_primary_10_1002_jcla_24570
crossref_primary_10_1016_j_dld_2024_01_198
crossref_primary_10_3390_molecules28196783
crossref_primary_10_37349_en_2024_00040
crossref_primary_10_1016_j_mrrev_2021_108385
crossref_primary_10_1016_j_jbc_2024_107826
crossref_primary_10_26565_2313_6693_2023_46_05
crossref_primary_10_3390_cancers14225483
crossref_primary_10_1038_s41420_022_01192_1
crossref_primary_10_3389_fmed_2022_981516
crossref_primary_10_2147_OTT_S253418
crossref_primary_10_1371_journal_pone_0274607
crossref_primary_10_1038_s41598_024_53399_0
crossref_primary_10_1515_med_2021_0278
crossref_primary_10_3892_ol_2021_12870
crossref_primary_10_1016_j_biopha_2024_116930
crossref_primary_10_1016_j_tcm_2018_08_007
crossref_primary_10_1051_bioconf_20236002012
crossref_primary_10_1039_C9TX00019D
crossref_primary_10_3389_fimmu_2023_1146628
crossref_primary_10_1186_s12935_022_02766_w
crossref_primary_10_1186_s13071_023_05765_6
crossref_primary_10_1016_j_jsbmb_2021_105818
crossref_primary_10_1016_j_cellsig_2019_109365
crossref_primary_10_1177_03000605211009494
crossref_primary_10_26508_lsa_202101330
crossref_primary_10_1007_s11033_022_07580_1
crossref_primary_10_1038_s41418_018_0157_9
crossref_primary_10_1002_2211_5463_13013
crossref_primary_10_1007_s11060_020_03633_2
crossref_primary_10_3390_antiox6020029
crossref_primary_10_1177_09603271231213979
crossref_primary_10_1080_17476348_2021_1840981
crossref_primary_10_3390_ijms24098213
crossref_primary_10_1021_acsnano_9b07350
crossref_primary_10_1093_abbs_gmz160
crossref_primary_10_3389_fimmu_2022_954616
crossref_primary_10_3233_THC_THC228039
crossref_primary_10_1111_jcmm_15653
crossref_primary_10_1016_j_bjorl_2023_101358
crossref_primary_10_3390_biom11030420
crossref_primary_10_3390_genes10020127
crossref_primary_10_1016_j_ecoenv_2022_113303
crossref_primary_10_1016_j_imlet_2024_106909
crossref_primary_10_1242_jcs_259018
crossref_primary_10_1007_s13273_019_00070_9
crossref_primary_10_5935_2526_8732_20230403
crossref_primary_10_1186_s12885_024_12897_0
crossref_primary_10_1016_j_intimp_2024_112817
crossref_primary_10_1016_j_phrs_2020_104831
crossref_primary_10_1111_1759_7714_15078
crossref_primary_10_1088_1478_3975_acf5bd
crossref_primary_10_3233_CBM_210082
crossref_primary_10_1002_wnan_1498
crossref_primary_10_3389_fcell_2022_1038841
crossref_primary_10_3390_cells13040361
crossref_primary_10_26442_00403660_2020_04_000634
crossref_primary_10_1016_j_archoralbio_2020_104711
crossref_primary_10_1016_j_hpb_2018_09_002
crossref_primary_10_1038_cddis_2017_421
crossref_primary_10_3390_cancers13071633
crossref_primary_10_3390_genes14112001
crossref_primary_10_3389_fonc_2024_1427663
crossref_primary_10_3389_fphar_2022_963614
crossref_primary_10_3390_ijms24010643
crossref_primary_10_1002_iub_1717
crossref_primary_10_2139_ssrn_4087725
crossref_primary_10_1016_j_prp_2019_152478
crossref_primary_10_1186_s11658_024_00545_1
crossref_primary_10_1016_j_neo_2018_08_004
crossref_primary_10_1007_s10495_024_01967_0
crossref_primary_10_3390_cells11233816
crossref_primary_10_12998_wjcc_v10_i27_9657
crossref_primary_10_1007_s10549_021_06133_7
crossref_primary_10_3390_ijms24021776
crossref_primary_10_1016_j_dld_2021_10_003
crossref_primary_10_1111_1759_7714_12476
crossref_primary_10_3389_fonc_2024_1431362
crossref_primary_10_3892_ijo_2018_4400
crossref_primary_10_1080_21655979_2021_1932225
Cites_doi 10.3390/jcm5010001
10.1634/stemcells.20-4-329
10.1182/blood.V98.2.335
10.1038/ncb1739
10.1634/stemcells.21-2-152
10.1073/pnas.0510652103
10.1038/nature03128
10.1038/nrm3758
10.1038/nature15748
10.1186/1471-213X-11-20
10.1242/dev.116418
10.1634/stemcells.2004-0330
10.1038/ncb1998
10.1073/pnas.0400067101
10.1002/stem.700
10.1242/dev.122.3.823
10.1242/dev.128090
10.1158/0008-5472.CAN-06-3128
10.1158/0008-5472.CAN-08-0786
10.1016/j.ydbio.2014.10.003
10.1073/pnas.1316728111
10.18632/oncotarget.2053
10.1016/j.stem.2010.04.014
10.1530/REP-11-0364
10.1038/labinvest.2013.155
10.1182/blood-2002-05-1341
10.18632/oncotarget.3488
10.1073/pnas.1004900107
10.1158/0008-5472.CAN-06-3557
10.1016/j.cell.2005.08.040
10.1210/en.2011-1488
10.1038/nature10106
10.1038/nature13287
10.1016/j.ccr.2012.10.012
10.1016/j.stem.2013.01.006
10.1073/pnas.1222684110
10.15252/embr.201540244
10.4161/cam.4.3.12000
10.1111/j.1440-169X.2009.01158.x
10.1038/nature06489
10.1038/nm.3901
10.1016/j.scr.2014.11.003
10.1038/ng.494
10.1242/dev.113.3.995
10.1242/dev.110908
10.1073/pnas.96.25.14482
10.1158/0008-5472.CAN-05-0626
10.1016/j.ccr.2012.11.009
10.1007/s12015-014-9510-7
10.1530/REP-12-0381
10.1210/me.2012-1126
10.1038/sj.embor.7400867
10.1006/scdb.2000.0155
10.1038/ncb3332
10.18632/oncotarget.8166
10.1186/1471-2121-13-35
10.1073/pnas.111614398
10.1038/nature10397
10.1084/jem.183.4.1797
10.1083/jcb.95.1.333
10.1182/blood-2010-08-300236
10.1038/bjc.2015.177
10.1002/hep.27887
10.1073/pnas.0910009106
10.1016/j.ydbio.2016.01.011
10.1016/j.cell.2006.07.024
10.1016/j.bbagrm.2015.05.005
10.1371/journal.pone.0008530
10.1016/j.stem.2009.03.003
10.1038/nature16064
10.1038/ncb3157
10.1038/bjc.2014.153
10.1158/1078-0432.CCR-11-1111
10.18632/oncotarget.6063
10.1242/dev.111583
10.1002/dvdy.24033
10.3390/jcm3041146
10.1038/nm.3902
10.1038/ncomms4070
10.1172/JCI38019
10.1016/j.cell.2008.03.027
10.1038/nm1483
10.1158/0008-5472.CAN-08-3580
10.1634/stemcells.2006-0532
10.1158/1078-0432.CCR-14-3193
10.1016/j.devcel.2016.01.007
10.1002/embj.201387098
10.1158/0008-5472.CAN-07-2545
10.1038/nature05372
10.1182/blood-2005-06-2284
10.1126/science.1248228
10.1172/JCI39104
10.1111/j.1440-169X.2008.01070.x
10.1016/j.ydbio.2011.12.041
10.1038/ncb2765
10.1038/cr.2012.175
10.1083/jcb.201508056
10.1016/j.canlet.2015.05.029
10.18632/oncotarget.4473
10.1038/nature05384
10.1083/jcb.201011077
10.1038/nature14897
10.1038/nm1297-1337
10.1016/j.stem.2009.11.015
10.1016/j.ydbio.2010.07.008
10.1126/science.282.5391.1145
10.1038/onc.2015.409
10.1002/stem.628
10.1038/ncb2976
10.1096/fj.11-186098
10.1089/scd.2012.0050
10.1016/j.cell.2007.11.019
10.1242/dev.119065
10.1016/j.stem.2016.03.005
10.1016/j.placenta.2015.04.001
10.1016/j.stem.2008.08.017
10.1016/j.devcel.2011.07.005
10.1242/dev.01801
10.1002/dvdy.22778
10.1111/exd.12671
10.1158/0008-5472.CAN-09-1132
10.1634/stemcells.2005-0150
10.2119/molmed.2012.00075
10.1002/stem.467
10.1158/0008-5472.CAN-14-3363
10.1895/wormbook.1.56.2
10.1016/j.cell.2009.11.007
10.1158/0008-5472.CAN-14-3476
10.1083/jcb.201503042
10.1161/01.RES.0000135902.99383.6f
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
5PM
DOI 10.1002/jcp.25797
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 3272
ExternalDocumentID PMC5507753
28079253
10_1002_jcp_25797
JCP25797
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Program of Shanghai Subject Chief Scientist
  funderid: 16XD1400600
– fundername: NIH/NIDDK
  funderid: R01 DK106109
– fundername: National Natural Science Foundation of China
  funderid: 81561138002; 31371480; 91542109
– fundername: NIDDK NIH HHS
  grantid: R01 DK106109
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
5PM
ID FETCH-LOGICAL-c5097-24c2e14d8bb9294d5e503b0e368dd6c4aa8dca06f1ad7696e7d5235abd3c5cfb3
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Thu Aug 21 17:53:52 EDT 2025
Sat Jul 26 00:57:36 EDT 2025
Wed Feb 19 02:35:24 EST 2025
Tue Jul 01 01:31:47 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Wed Jan 22 16:52:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords reprogramming
stem cells
cancer stem cells
EMT
MET
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5097-24c2e14d8bb9294d5e503b0e368dd6c4aa8dca06f1ad7696e7d5235abd3c5cfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
T.C. and Y.Y. contributed equally to this work.
ORCID 0000-0002-6702-2648
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5507753
PMID 28079253
PQID 1930913504
PQPubID 1006363
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5507753
proquest_journals_1930913504
pubmed_primary_28079253
crossref_citationtrail_10_1002_jcp_25797
crossref_primary_10_1002_jcp_25797
wiley_primary_10_1002_jcp_25797_JCP25797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 478
1991; 113
2011; 117
2012; 366
2010; 107
2015; 75
2010; 346
2015; 142
2016; 143
2005; 65
2012; 18
2013; 242
2009; 119
2012; 13
1997; 3
2011; 194
2016; 36
2016; 35
2011; 474
2009; 11
2010; 28
2000; 11
2007; 8
2014; 16
2014; 15
2013; 110
2012; 26
2011; 240
2014; 94
2012; 22
2007; 67
2010; 4
2010; 7
2010; 6
1998; 282
2014; 10
2007; 445
2009; 69
2015; 401
2015; 365
2015; 527
1996; 122
2015; 525
2008; 50
2016; 18
2012; 30
2016; 5
2016; 7
2010; 42
2004; 432
2005; 123
2015; 62
2015; 1849
2015; 112
2016; 212
2008; 133
2014; 141
2006; 107
2003; 101
2010; 52
2014; 33
2003; 21
2006; 103
2009; 106
2015; 36
2013; 27
2013; 22
2005; 132
1982; 95
2013; 23
1996; 183
2011; 11
2008; 3
2011; 17
2005; 23
2014; 5
2013; 15
2014; 3
2013; 12
2015; 210
2007; 131
2011; 21
2008; 68
1999; 96
2006; 126
2011; 29
2007; 25
2001; 98
2004; 101
2015; 14
2015; 6
2015; 17
2012; 143
2015; 16
2006; 12
2013; 145
2008; 10
2014; 110
2014; 111
2014; 510
2009; 139
2015; 24
2012; 153
2004; 95
2002; 20
2015; 21
2014
2009; 4
2016; 411
2008; 451
2014; 343
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Kawamura K. (e_1_2_8_58_1) 1991; 113
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
Goodell M. A. (e_1_2_8_32_1) 1996; 183
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_1
Kanatsu M. (e_1_2_8_56_1) 1996; 122
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 183
  start-page: 1797
  issue: 4
  year: 1996
  end-page: 1806
  article-title: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
  publication-title: The Journal of Experimental Medicine
– volume: 68
  start-page: 10051
  issue: 24
  year: 2008
  end-page: 10059
  article-title: Cancer stem cells are enriched in the side population cells in a mouse model of glioma
  publication-title: Cancer Research
– volume: 10
  start-page: 765
  issue: 7
  year: 2008
  end-page: 775
  article-title: RhoA and microtubule dynamics control cell‐basement membrane interaction in EMT during gastrulation
  publication-title: Nature Cell Biology
– volume: 21
  start-page: 998
  issue: 9
  year: 2015
  end-page: 1009
  article-title: Epithelial‐to‐mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis
  publication-title: Nature Medicine
– volume: 365
  start-page: 190
  issue: 2
  year: 2015
  end-page: 200
  article-title: BCL6 induces EMT by promoting the ZEB1‐mediated transcription repression of E‐cadherin in breast cancer cells
  publication-title: Cancer Letters
– volume: 26
  start-page: 503
  issue: 2
  year: 2012
  end-page: 512
  article-title: Cadherin‐11 contributes to pulmonary fibrosis: Potential role in TGF‐beta production and epithelial to mesenchymal transition
  publication-title: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
– volume: 366
  start-page: 34
  issue: 1
  year: 2012
  end-page: 54
  article-title: Neural crest delamination and migration: From epithelium‐to‐mesenchyme transition to collective cell migration
  publication-title: Developmental Biology
– volume: 111
  start-page: 6660
  issue: 18
  year: 2014
  end-page: 6665
  article-title: Interepithelial signaling with nephric duct is required for the formation of overlying coelomic epithelial cell sheet
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 132
  start-page: 2093
  issue: 9
  year: 2005
  end-page: 2102
  article-title: Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst
  publication-title: Development
– volume: 6
  start-page: 22934
  issue: 26
  year: 2015
  end-page: 22948
  article-title: Small molecule/ML327 mediated transcriptional de‐repression of E‐cadherin and inhibition of epithelial‐to‐mesenchymal transition
  publication-title: Oncotarget
– volume: 242
  start-page: 1332
  issue: 11
  year: 2013
  end-page: 1344
  article-title: Regulation of mesenchymal‐to‐epithelial transition by PARAXIS during somitogenesis
  publication-title: Developmental Dynamics: An Official Publication of the American Association of Anatomists
– volume: 103
  start-page: 1480
  issue: 5
  year: 2006
  end-page: 1485
  article-title: Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 35
  year: 2012
  article-title: Cells derived from murine induced pluripotent stem cells (iPSC) by treatment with members of TGF‐beta family give rise to osteoblasts differentiation and form bone in vivo
  publication-title: BMC Cell Biology
– volume: 29
  start-page: 764
  issue: 5
  year: 2011
  end-page: 776
  article-title: Snail and the microRNA‐200 family act in opposition to regulate epithelial‐to‐mesenchymal transition and germ layer fate restriction in differentiating ESCs
  publication-title: Stem Cells
– volume: 478
  start-page: 70
  issue: 7367
  year: 2011
  end-page: 75
  article-title: Human oocytes reprogram somatic cells to a pluripotent state
  publication-title: Nature
– volume: 27
  start-page: 1442
  issue: 9
  year: 2013
  end-page: 1454
  article-title: CTNNB1 in mesenchyme regulates epithelial cell differentiation during Mullerian duct and postnatal uterine development
  publication-title: Molecular Endocrinology
– volume: 106
  start-page: 19035
  issue: 45
  year: 2009
  end-page: 19039
  article-title: P21CIP1 attenuates Ras‐ and c‐Myc‐dependent breast tumor epithelial mesenchymal transition and cancer stem cell‐like gene expression in vivo
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 112
  start-page: 1944
  issue: 12
  year: 2015
  end-page: 1950
  article-title: Expression of E‐cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour‐budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer
  publication-title: British Journal of Cancer
– volume: 5
  start-page: 3070
  year: 2014
  article-title: Snail1‐dependent control of embryonic stem cell pluripotency and lineage commitment
  publication-title: Nature Communications
– volume: 445
  start-page: 111
  issue: 7123
  year: 2007
  end-page: 115
  article-title: Identification and expansion of human colon‐cancer‐initiating cells
  publication-title: Nature
– volume: 62
  start-page: 801
  issue: 3
  year: 2015
  end-page: 815
  article-title: MicroRNA‐125b attenuates epithelial‐mesenchymal transitions and targets stem‐like liver cancer cells through small mothers against decapentaplegic 2 and 4
  publication-title: Hepatology
– volume: 110
  start-page: 12331
  issue: 30
  year: 2013
  end-page: 12336
  article-title: Loss of corepressor PER2 under hypoxia up‐regulates OCT1‐mediated EMT gene expression and enhances tumor malignancy
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 240
  start-page: 2646
  issue: 12
  year: 2011
  end-page: 2656
  article-title: Deficiency in Crumbs homolog 2 (Crb2) affects gastrulation and results in embryonic lethality in mice
  publication-title: Developmental Dynamics: An Official Publication of the American Association of Anatomists
– volume: 142
  start-page: 1516
  issue: 8
  year: 2015
  end-page: 1527
  article-title: Wnt5a and Wnt11 regulate mammalian anterior‐posterior axis elongation
  publication-title: Development
– volume: 142
  start-page: 92
  issue: 1
  year: 2015
  end-page: 98
  article-title: Rho kinase activity controls directional cell movements during primitive streak formation in the rabbit embryo
  publication-title: Development
– volume: 18
  start-page: 1197
  year: 2012
  end-page: 1208
  article-title: Transformation of epithelial ovarian cancer stemlike cells into mesenchymal lineage via EMT results in cellular heterogeneity and supports tumor engraftment
  publication-title: Molecular Medicine
– volume: 126
  start-page: 663
  issue: 4
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 23
  start-page: 1059
  issue: 8
  year: 2005
  end-page: 1065
  article-title: Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice
  publication-title: Stem Cells
– volume: 133
  start-page: 704
  issue: 4
  year: 2008
  end-page: 715
  article-title: The epithelial‐mesenchymal transition generates cells with properties of stem cells
  publication-title: Cell
– volume: 4
  start-page: 8530
  issue: 12
  year: 2009
  article-title: SNAI1 and SNAI2 are asymmetrically expressed at the 2‐cell stage and become segregated to the TE in the mouse blastocyst
  publication-title: PLoS ONE
– volume: 95
  start-page: 333
  issue: 1
  year: 1982
  end-page: 339
  article-title: Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells
  publication-title: The Journal of Cell Biology
– volume: 36
  start-page: 645
  issue: 6
  year: 2015
  end-page: 651
  article-title: The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E‐cadherin
  publication-title: Placenta
– volume: 119
  start-page: 1420
  issue: 6
  year: 2009
  end-page: 1428
  article-title: The basics of epithelial‐mesenchymal transition
  publication-title: The Journal of Clinical Investigation
– volume: 401
  start-page: 17
  issue: 1
  year: 2015
  end-page: 24
  article-title: Epiblast morphogenesis before gastrulation
  publication-title: Developmental Biology
– volume: 8
  start-page: 104
  issue: 1
  year: 2007
  end-page: 109
  article-title: Snail genes at the crossroads of symmetric and asymmetric processes in the developing mesoderm
  publication-title: EMBO Reports
– volume: 4
  start-page: 440
  issue: 3
  year: 2010
  end-page: 446
  article-title: The cessation of gastrulation: BMP signaling and EMT during and at the end of gastrulation
  publication-title: Cell Adhesion & Migration
– volume: 451
  start-page: 345
  issue: 7176
  year: 2008
  end-page: 349
  article-title: Identification of cells initiating human melanomas
  publication-title: Nature
– volume: 98
  start-page: 335
  issue: 2
  year: 2001
  end-page: 342
  article-title: Bone morphogenetic protein 4 induces efficient hematopoietic differentiation of rhesus monkey embryonic stem cells in vitro
  publication-title: Blood
– volume: 69
  start-page: 8208
  issue: 20
  year: 2009
  end-page: 8215
  article-title: Aldehyde dehydrogenase‐expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer
  publication-title: Cancer Research
– volume: 131
  start-page: 861
  issue: 5
  year: 2007
  end-page: 872
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 107
  start-page: 2162
  issue: 5
  year: 2006
  end-page: 2169
  article-title: Selection based on CD133 and high aldehyde dehydrogenase activity isolates long‐term reconstituting human hematopoietic stem cells
  publication-title: Blood
– volume: 343
  start-page: 1253
  issue: 6176
  year: 2014
  end-page: 1256
  article-title: Vertebrate limb bud formation is initiated by localized epithelial‐to‐mesenchymal transition
  publication-title: Science
– volume: 98
  start-page: 6686
  issue: 12
  year: 2001
  end-page: 6691
  article-title: Genetic programs of epithelial cell plasticity directed by transforming growth factor‐beta
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: 440
  issue: 5
  year: 2009
  end-page: 452
  article-title: SSEA‐1 is an enrichment marker for tumor‐initiating cells in human glioblastoma
  publication-title: Cell Stem Cell
– volume: 50
  start-page: 755
  issue: 9
  year: 2008
  end-page: 766
  article-title: Epithelial to mesenchymal transition during gastrulation: An embryological view
  publication-title: Development, Growth & Differentiation
– volume: 18
  start-page: 495
  issue: 4
  year: 2016
  end-page: 507
  article-title: SIRT6 controls hematopoietic stem cell homeostasis through epigenetic regulation of wnt signaling
  publication-title: Cell Stem Cell
– start-page: 1
  year: 2014
  end-page: 35
  article-title: Epithelial junctions, cytoskeleton, and polarity
  publication-title: WormBook: The Online Review of C Elegans Biology
– volume: 113
  start-page: 995
  issue: 3
  year: 1991
  end-page: 1005
  article-title: Budding‐specific lectin induced in epithelial cells is an extracellular matrix component for stem cell aggregation in tunicates
  publication-title: Development
– volume: 143
  start-page: 715
  issue: 4
  year: 2016
  end-page: 727
  article-title: Molecular model for force production and transmission during vertebrate gastrulation
  publication-title: Development
– volume: 15
  start-page: 178
  issue: 3
  year: 2014
  end-page: 196
  article-title: Molecular mechanisms of epithelial‐mesenchymal transition
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 15
  start-page: 829
  issue: 7
  year: 2013
  end-page: 838
  article-title: Sequential introduction of reprogramming factors reveals a time‐sensitive requirement for individual factors and a sequential EMT‐MET mechanism for optimal reprogramming
  publication-title: Nature Cell Biology
– volume: 6
  start-page: 37526
  issue: 35
  year: 2015
  end-page: 37543
  article-title: Combinatorial TGF‐beta attenuation with paclitaxel inhibits the epithelial‐to‐mesenchymal transition and breast cancer stem‐like cells
  publication-title: Oncotarget
– volume: 411
  start-page: 50
  issue: 1
  year: 2016
  end-page: 60
  article-title: Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes
  publication-title: Developmental Biology
– volume: 22
  start-page: 1177
  issue: 8
  year: 2013
  end-page: 1189
  article-title: Geminin promotes an epithelial‐to‐mesenchymal transition in an embryonic stem cell model of gastrulation
  publication-title: Stem Cells and Development
– volume: 12
  start-page: 407
  issue: 4
  year: 2013
  end-page: 412
  article-title: Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 16
  start-page: 488
  issue: 6
  year: 2014
  end-page: 494
  article-title: Oncogenic roles of EMT‐inducing transcription factors
  publication-title: Nature Cell Biology
– volume: 10
  start-page: 587
  issue: 4
  year: 2014
  end-page: 599
  article-title: Mesenchymal stem cell priming: Fine‐tuning adhesion and function
  publication-title: Stem Cell Reviews
– volume: 23
  start-page: 49
  issue: 1
  year: 2013
  end-page: 69
  article-title: Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective
  publication-title: Cell Research
– volume: 12
  start-page: 1167
  issue: 10
  year: 2006
  end-page: 1174
  article-title: Targeting of CD44 eradicates human acute myeloid leukemic stem cells
  publication-title: Nature Medicine
– volume: 22
  start-page: 709
  issue: 6
  year: 2012
  end-page: 724
  article-title: Metastatic colonization requires the repression of the epithelial‐mesenchymal transition inducer Prrx1
  publication-title: Cancer Cell
– volume: 5
  issue: 1
  year: 2016
  article-title: Epithelial‐mesenchymal transitions during neural crest and somite development
  publication-title: Journal of Clinical Medicine
– volume: 212
  start-page: 219
  issue: 2
  year: 2016
  end-page: 229
  article-title: Myosin‐dependent remodeling of adherens junctions protects junctions from Snail‐dependent disassembly
  publication-title: The Journal of Cell Biology
– volume: 474
  start-page: 225
  issue: 7350
  year: 2011
  end-page: 229
  article-title: Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1
  publication-title: Nature
– volume: 210
  start-page: 1185
  issue: 7
  year: 2015
  end-page: 1197
  article-title: PC7 and the related proteases Furin and Pace4 regulate E‐cadherin function during blastocyst formation
  publication-title: The Journal of Cell Biology
– volume: 194
  start-page: 489
  issue: 3
  year: 2011
  end-page: 503
  article-title: FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk
  publication-title: The Journal of Cell Biology
– volume: 110
  start-page: 2514
  issue: 10
  year: 2014
  end-page: 2523
  article-title: Tumour‐initiating capacity is independent of epithelial‐mesenchymal transition status in breast cancer cell lines
  publication-title: British Journal of Cancer
– volume: 33
  start-page: 409
  issue: 5
  year: 2014
  end-page: 417
  article-title: IPS cells: A game changer for future medicine
  publication-title: The EMBO Journal
– volume: 21
  start-page: 3716
  issue: 16
  year: 2015
  end-page: 3726
  article-title: A hypoxia‐induced vascular endothelial‐to‐mesenchymal transition in development of radiation‐induced pulmonary fibrosis
  publication-title: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research
– volume: 35
  start-page: 3465
  issue: 26
  year: 2016
  end-page: 3475
  article-title: Cytoplasmic PML promotes TGF‐beta‐associated epithelial‐mesenchymal transition and invasion in prostate cancer
  publication-title: Oncogene
– volume: 28
  start-page: 1435
  issue: 8
  year: 2010
  end-page: 1445
  article-title: Epithelial‐mesenchymal transition‐derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells
  publication-title: Stem Cells
– volume: 527
  start-page: 525
  issue: 7579
  year: 2015
  end-page: 530
  article-title: Epithelial‐to‐mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer
  publication-title: Nature
– volume: 153
  start-page: 925
  issue: 2
  year: 2012
  end-page: 936
  article-title: Twist modulates human trophoblastic cell invasion via regulation of N‐cadherin
  publication-title: Endocrinology
– volume: 143
  start-page: 377
  issue: 3
  year: 2012
  end-page: 387
  article-title: Expression of mesenchymal‐related genes by the bovine trophectoderm following conceptus attachment to the endometrial epithelium
  publication-title: Reproduction
– volume: 30
  start-page: 33
  issue: 1
  year: 2012
  end-page: 41
  article-title: Concise review: Induced pluripotent stem cells versus embryonic stem cells: Close enough or yet too far apart
  publication-title: Stem Cells
– volume: 6
  start-page: 59
  issue: 1
  year: 2010
  end-page: 70
  article-title: SIP1 mediates cell‐fate decisions between neuroectoderm and mesendoderm in human pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 346
  start-page: 25
  issue: 1
  year: 2010
  end-page: 38
  article-title: O‐fucosylation of thrombospondin type 1 repeats restricts epithelial to mesenchymal transition (EMT) and maintains epiblast pluripotency during mouse gastrulation
  publication-title: Developmental Biology
– volume: 282
  start-page: 1145
  issue: 5391
  year: 1998
  end-page: 1147
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
– volume: 21
  start-page: 989
  issue: 9
  year: 2015
  end-page: 997
  article-title: Snail1‐induced partial epithelial‐to‐mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease
  publication-title: Nature Medicine
– volume: 20
  start-page: 329
  issue: 4
  year: 2002
  end-page: 337
  article-title: Preimplantation human embryos and embryonic stem cells show comparable expression of stage‐specific embryonic antigens
  publication-title: Stem Cells
– volume: 21
  start-page: 546
  issue: 3
  year: 2011
  end-page: 558
  article-title: Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation
  publication-title: Developmental Cell
– volume: 94
  start-page: 455
  issue: 4
  year: 2014
  end-page: 466
  article-title: Activation of platelet‐activating factor receptor exacerbates renal inflammation and promotes fibrosis
  publication-title: Laboratory Investigation; a Journal of Technical Methods and Pathology
– volume: 510
  start-page: 533
  issue: 7506
  year: 2014
  end-page: 536
  article-title: Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells
  publication-title: Nature
– volume: 5
  start-page: 7027
  issue: 16
  year: 2014
  end-page: 7039
  article-title: The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics
  publication-title: Oncotarget
– volume: 96
  start-page: 14482
  issue: 25
  year: 1999
  end-page: 14486
  article-title: Hematopoietic potential of stem cells isolated from murine skeletal muscle
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  start-page: 1104
  issue: 5
  year: 2007
  end-page: 1113
  article-title: Genome‐wide reprogramming in hybrids of somatic cells and embryonic stem cells
  publication-title: Stem Cells
– volume: 101
  start-page: 14228
  issue: 39
  year: 2004
  end-page: 14233
  article-title: A distinct “side population” of cells with high drug efflux capacity in human tumor cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 24
  start-page: 391
  issue: 5
  year: 2015
  end-page: 393
  article-title: Vitiligo patient‐derived keratinocytes exhibit characteristics of normal wound healing via epithelial to mesenchymal transition
  publication-title: Experimental Dermatology
– volume: 139
  start-page: 871
  issue: 5
  year: 2009
  end-page: 890
  article-title: Epithelial‐mesenchymal transitions in development and disease
  publication-title: Cell
– volume: 16
  start-page: 1288
  issue: 10
  year: 2015
  end-page: 1298
  article-title: UTX inhibits EMT‐induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1
  publication-title: EMBO Reports
– volume: 21
  start-page: 152
  issue: 2
  year: 2003
  end-page: 161
  article-title: Multilineage potential of homozygous stem cells derived from metaphase II oocytes
  publication-title: Stem Cells
– volume: 42
  start-page: 89
  issue: 1
  year: 2010
  end-page: 93
  article-title: Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E‐cadherin
  publication-title: Nature Genetics
– volume: 3
  start-page: 1337
  issue: 12
  year: 1997
  end-page: 1345
  article-title: Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species
  publication-title: Nature Medicine
– volume: 11
  start-page: 93
  issue: 2
  year: 2000
  end-page: 104
  article-title: Cellular mechanisms of implantation in domestic farm animals
  publication-title: Seminars in Cell & Developmental Biology
– volume: 67
  start-page: 4827
  issue: 10
  year: 2007
  end-page: 4833
  article-title: Side population in human lung cancer cell lines and tumors is enriched with stem‐like cancer cells
  publication-title: Cancer Research
– volume: 1849
  start-page: 919
  issue: 8
  year: 2015
  end-page: 929
  article-title: Epigenetic control of EMT/MET dynamics: HNF4alpha impacts DNMT3s through miRs‐29
  publication-title: Biochimica et biophysica acta
– volume: 7
  start-page: 27067
  issue: 19
  year: 2016
  end-page: 27084
  article-title: Stability of the hybrid epithelial/mesenchymal phenotype
  publication-title: Oncotarget
– volume: 527
  start-page: 472
  issue: 7579
  year: 2015
  end-page: 476
  article-title: Epithelial‐to‐mesenchymal transition is not required for lung metastasis but contributes to chemoresistance
  publication-title: Nature
– volume: 119
  start-page: 1438
  issue: 6
  year: 2009
  end-page: 1449
  article-title: Epithelial‐mesenchymal transitions: The importance of changing cell state in development and disease
  publication-title: The Journal of Clinical Investigation
– volume: 432
  start-page: 396
  issue: 7015
  year: 2004
  end-page: 401
  article-title: Identification of human brain tumour initiating cells
  publication-title: Nature
– volume: 18
  start-page: 349
  issue: 4
  year: 2016
  end-page: 355
  article-title: Tissue‐specific designs of stem cell hierarchies
  publication-title: Nature Cell Biology
– volume: 3
  start-page: 1146
  issue: 4
  year: 2014
  end-page: 1162
  article-title: Comparing ESC and iPSC‐based models for human genetic disorders
  publication-title: Journal of Clinical Medicine
– volume: 69
  start-page: 5648
  issue: 14
  year: 2009
  end-page: 5655
  article-title: Expression of an exogenous human Oct‐4 promoter identifies tumor‐initiating cells in osteosarcoma
  publication-title: Cancer Research
– volume: 65
  start-page: 5506
  issue: 13
  year: 2005
  end-page: 5511
  article-title: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties
  publication-title: Cancer Research
– volume: 7
  start-page: 51
  issue: 1
  year: 2010
  end-page: 63
  article-title: A mesenchymal‐to‐epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
– volume: 68
  start-page: 800
  issue: 3
  year: 2008
  end-page: 807
  article-title: ABCG2 expression and side population abundance regulated by a transforming growth factor beta‐directed epithelial‐mesenchymal transition
  publication-title: Cancer Research
– volume: 67
  start-page: 4173
  issue: 9
  year: 2007
  end-page: 4181
  article-title: CD34 expression by hair follicle stem cells is required for skin tumor development in mice
  publication-title: Cancer Research
– volume: 23
  start-page: 1105
  issue: 8
  year: 2005
  end-page: 1112
  article-title: Mesenchymal stem cells derived from CD133‐positive cells in mobilized peripheral blood and cord blood: Proliferation, Oct4 expression, and plasticity
  publication-title: Stem Cells
– volume: 17
  start-page: 6174
  issue: 19
  year: 2011
  end-page: 6184
  article-title: Targeting ALDH(bright) human carcinoma‐initiating cells with ALDH1A1‐specific CD8(+) t cells
  publication-title: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research
– volume: 75
  start-page: 2749
  issue: 13
  year: 2015
  end-page: 2759
  article-title: Tracking and functional characterization of epithelial‐Mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis
  publication-title: Cancer Research
– volume: 22
  start-page: 699
  issue: 6
  year: 2012
  end-page: 701
  article-title: EMT and MET in metastasis: Where are the cancer stem cells
  publication-title: Cancer Cell
– volume: 3
  start-page: 493
  issue: 5
  year: 2008
  end-page: 507
  article-title: Periodic activation of Wnt/beta‐catenin signaling enhances somatic cell reprogramming mediated by cell fusion
  publication-title: Cell Stem Cell
– volume: 445
  start-page: 106
  issue: 7123
  year: 2007
  end-page: 110
  article-title: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice
  publication-title: Nature
– volume: 142
  start-page: 21
  issue: 1
  year: 2015
  end-page: 30
  article-title: Myocardin‐related transcription factors control the motility of epicardium‐derived cells and the maturation of coronary vessels
  publication-title: Development
– volume: 145
  start-page: R65
  issue: 3
  year: 2013
  end-page: R80
  article-title: Early cell fate decisions in the mouse embryo
  publication-title: Reproduction
– volume: 101
  start-page: 2973
  issue: 8
  year: 2003
  end-page: 2982
  article-title: Fetal liver stroma consists of cells in epithelial‐to‐mesenchymal transition
  publication-title: Blood
– volume: 36
  start-page: 249
  issue: 3
  year: 2016
  end-page: 261
  article-title: Cell division drives epithelial cell rearrangements during gastrulation in chick
  publication-title: Developmental Cell
– volume: 17
  start-page: 678
  issue: 5
  year: 2015
  end-page: 688
  article-title: Matrix stiffness drives epithelial‐mesenchymal transition and tumour metastasis through a TWIST1‐G3BP2 mechanotransduction pathway
  publication-title: Nature Cell Biology
– volume: 141
  start-page: 4285
  issue: 22
  year: 2014
  end-page: 4297
  article-title: Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation
  publication-title: Development
– volume: 123
  start-page: 917
  issue: 5
  year: 2005
  end-page: 929
  article-title: Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation
  publication-title: Cell
– volume: 107
  start-page: 15449
  issue: 35
  year: 2010
  end-page: 15454
  article-title: Core epithelial‐to‐mesenchymal transition interactome gene‐expression signature is associated with claudin‐low and metaplastic breast cancer subtypes
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 75
  start-page: 3925
  issue: 18
  year: 2015
  end-page: 3935
  article-title: DeltaNp63alpha promotes breast cancer cell motility through the selective activation of components of the epithelial‐to‐mesenchymal transition program
  publication-title: Cancer Research
– volume: 14
  start-page: 39
  issue: 1
  year: 2015
  end-page: 53
  article-title: Ultrastructural visualization of the mesenchymal‐to‐epithelial transition during reprogramming of human fibroblasts to induced pluripotent stem cells
  publication-title: Stem Cell Research
– volume: 6
  start-page: 7828
  issue: 10
  year: 2015
  end-page: 7837
  article-title: Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in vitro and in vivo by reversing epithelial‐mesenchymal transition
  publication-title: Oncotarget
– volume: 95
  start-page: 9
  issue: 1
  year: 2004
  end-page: 20
  article-title: Mesenchymal stem cells and their potential as cardiac therapeutics
  publication-title: Circulation Research
– volume: 122
  start-page: 823
  issue: 3
  year: 1996
  end-page: 830
  article-title: In vitro analysis of epiblast tissue potency for hematopoietic cell differentiation
  publication-title: Development
– volume: 117
  start-page: 5620
  issue: 21
  year: 2011
  end-page: 5630
  article-title: The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization
  publication-title: Blood
– volume: 11
  start-page: 1487
  issue: 12
  year: 2009
  end-page: 1495
  article-title: The EMT‐activator ZEB1 promotes tumorigenicity by repressing stemness‐inhibiting microRNAs
  publication-title: Nature Cell Biology
– volume: 11
  start-page: 20
  year: 2011
  article-title: FGF signalling through RAS/MAPK and PI3 K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E‐cadherin expression
  publication-title: BMC Developmental Biology
– volume: 52
  start-page: 263
  issue: 3
  year: 2010
  end-page: 273
  article-title: Mechanisms of trophectoderm fate specification in preimplantation mouse development
  publication-title: Development, Growth & Differentiation
– volume: 525
  start-page: 256
  issue: 7568
  year: 2015
  end-page: 260
  article-title: Distinct EMT programs control normal mammary stem cells and tumour‐initiating cells
  publication-title: Nature
– ident: e_1_2_8_54_1
  doi: 10.3390/jcm5010001
– ident: e_1_2_8_42_1
  doi: 10.1634/stemcells.20-4-329
– ident: e_1_2_8_61_1
  doi: 10.1182/blood.V98.2.335
– ident: e_1_2_8_77_1
  doi: 10.1038/ncb1739
– ident: e_1_2_8_65_1
  doi: 10.1634/stemcells.21-2-152
– ident: e_1_2_8_117_1
  doi: 10.1073/pnas.0510652103
– ident: e_1_2_8_98_1
  doi: 10.1038/nature03128
– ident: e_1_2_8_59_1
  doi: 10.1038/nrm3758
– ident: e_1_2_8_28_1
  doi: 10.1038/nature15748
– ident: e_1_2_8_40_1
  doi: 10.1186/1471-213X-11-20
– ident: e_1_2_8_112_1
  doi: 10.1242/dev.116418
– ident: e_1_2_8_110_1
  doi: 10.1634/stemcells.2004-0330
– ident: e_1_2_8_119_1
  doi: 10.1038/ncb1998
– ident: e_1_2_8_44_1
  doi: 10.1073/pnas.0400067101
– ident: e_1_2_8_11_1
  doi: 10.1002/stem.700
– volume: 122
  start-page: 823
  issue: 3
  year: 1996
  ident: e_1_2_8_56_1
  article-title: In vitro analysis of epiblast tissue potency for hematopoietic cell differentiation
  publication-title: Development
  doi: 10.1242/dev.122.3.823
– ident: e_1_2_8_86_1
  doi: 10.1242/dev.128090
– ident: e_1_2_8_113_1
  doi: 10.1158/0008-5472.CAN-06-3128
– ident: e_1_2_8_41_1
  doi: 10.1158/0008-5472.CAN-08-0786
– ident: e_1_2_8_97_1
  doi: 10.1016/j.ydbio.2014.10.003
– ident: e_1_2_8_127_1
  doi: 10.1073/pnas.1316728111
– ident: e_1_2_8_12_1
  doi: 10.18632/oncotarget.2053
– ident: e_1_2_8_63_1
  doi: 10.1016/j.stem.2010.04.014
– ident: e_1_2_8_124_1
  doi: 10.1530/REP-11-0364
– ident: e_1_2_8_23_1
  doi: 10.1038/labinvest.2013.155
– ident: e_1_2_8_17_1
  doi: 10.1182/blood-2002-05-1341
– ident: e_1_2_8_30_1
  doi: 10.18632/oncotarget.3488
– ident: e_1_2_8_106_1
  doi: 10.1073/pnas.1004900107
– ident: e_1_2_8_45_1
  doi: 10.1158/0008-5472.CAN-06-3557
– ident: e_1_2_8_79_1
  doi: 10.1016/j.cell.2005.08.040
– ident: e_1_2_8_78_1
  doi: 10.1210/en.2011-1488
– ident: e_1_2_8_71_1
  doi: 10.1038/nature10106
– ident: e_1_2_8_123_1
  doi: 10.1038/nature13287
– ident: e_1_2_8_82_1
  doi: 10.1016/j.ccr.2012.10.012
– ident: e_1_2_8_38_1
  doi: 10.1016/j.stem.2013.01.006
– ident: e_1_2_8_47_1
  doi: 10.1073/pnas.1222684110
– ident: e_1_2_8_20_1
  doi: 10.15252/embr.201540244
– ident: e_1_2_8_83_1
  doi: 10.4161/cam.4.3.12000
– ident: e_1_2_8_94_1
  doi: 10.1111/j.1440-169X.2009.01158.x
– ident: e_1_2_8_95_1
  doi: 10.1038/nature06489
– ident: e_1_2_8_35_1
  doi: 10.1038/nm.3901
– ident: e_1_2_8_46_1
  doi: 10.1016/j.scr.2014.11.003
– ident: e_1_2_8_73_1
  doi: 10.1038/ng.494
– volume: 113
  start-page: 995
  issue: 3
  year: 1991
  ident: e_1_2_8_58_1
  article-title: Budding‐specific lectin induced in epithelial cells is an extracellular matrix component for stem cell aggregation in tunicates
  publication-title: Development
  doi: 10.1242/dev.113.3.995
– ident: e_1_2_8_18_1
  doi: 10.1242/dev.110908
– ident: e_1_2_8_49_1
  doi: 10.1073/pnas.96.25.14482
– ident: e_1_2_8_88_1
  doi: 10.1158/0008-5472.CAN-05-0626
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ccr.2012.11.009
– ident: e_1_2_8_57_1
  doi: 10.1007/s12015-014-9510-7
– ident: e_1_2_8_93_1
  doi: 10.1530/REP-12-0381
– ident: e_1_2_8_102_1
  doi: 10.1210/me.2012-1126
– ident: e_1_2_8_75_1
  doi: 10.1038/sj.embor.7400867
– ident: e_1_2_8_13_1
  doi: 10.1006/scdb.2000.0155
– ident: e_1_2_8_115_1
  doi: 10.1038/ncb3332
– ident: e_1_2_8_52_1
  doi: 10.18632/oncotarget.8166
– ident: e_1_2_8_62_1
  doi: 10.1186/1471-2121-13-35
– ident: e_1_2_8_129_1
  doi: 10.1073/pnas.111614398
– ident: e_1_2_8_80_1
  doi: 10.1038/nature10397
– volume: 183
  start-page: 1797
  issue: 4
  year: 1996
  ident: e_1_2_8_32_1
  article-title: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
  publication-title: The Journal of Experimental Medicine
  doi: 10.1084/jem.183.4.1797
– ident: e_1_2_8_36_1
  doi: 10.1083/jcb.95.1.333
– ident: e_1_2_8_34_1
  doi: 10.1182/blood-2010-08-300236
– ident: e_1_2_8_29_1
  doi: 10.1038/bjc.2015.177
– ident: e_1_2_8_131_1
  doi: 10.1002/hep.27887
– ident: e_1_2_8_67_1
  doi: 10.1073/pnas.0910009106
– ident: e_1_2_8_111_1
  doi: 10.1016/j.ydbio.2016.01.011
– ident: e_1_2_8_105_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_8_22_1
  doi: 10.1016/j.bbagrm.2015.05.005
– ident: e_1_2_8_9_1
  doi: 10.1371/journal.pone.0008530
– ident: e_1_2_8_100_1
  doi: 10.1016/j.stem.2009.03.003
– ident: e_1_2_8_130_1
  doi: 10.1038/nature16064
– ident: e_1_2_8_118_1
  doi: 10.1038/ncb3157
– ident: e_1_2_8_122_1
  doi: 10.1038/bjc.2014.153
– ident: e_1_2_8_114_1
  doi: 10.1158/1078-0432.CCR-11-1111
– ident: e_1_2_8_84_1
  doi: 10.18632/oncotarget.6063
– ident: e_1_2_8_101_1
  doi: 10.1242/dev.111583
– ident: e_1_2_8_91_1
  doi: 10.1002/dvdy.24033
– ident: e_1_2_8_39_1
  doi: 10.3390/jcm3041146
– ident: e_1_2_8_70_1
  doi: 10.1038/nm.3902
– ident: e_1_2_8_66_1
  doi: 10.1038/ncomms4070
– ident: e_1_2_8_2_1
  doi: 10.1172/JCI38019
– ident: e_1_2_8_72_1
  doi: 10.1016/j.cell.2008.03.027
– ident: e_1_2_8_51_1
  doi: 10.1038/nm1483
– ident: e_1_2_8_60_1
  doi: 10.1158/0008-5472.CAN-08-3580
– ident: e_1_2_8_4_1
  doi: 10.1634/stemcells.2006-0532
– ident: e_1_2_8_21_1
  doi: 10.1158/1078-0432.CCR-14-3193
– ident: e_1_2_8_27_1
  doi: 10.1016/j.devcel.2016.01.007
– ident: e_1_2_8_48_1
  doi: 10.1002/embj.201387098
– ident: e_1_2_8_126_1
  doi: 10.1158/0008-5472.CAN-07-2545
– ident: e_1_2_8_81_1
  doi: 10.1038/nature05372
– ident: e_1_2_8_43_1
  doi: 10.1182/blood-2005-06-2284
– ident: e_1_2_8_37_1
  doi: 10.1126/science.1248228
– ident: e_1_2_8_55_1
  doi: 10.1172/JCI39104
– ident: e_1_2_8_76_1
  doi: 10.1111/j.1440-169X.2008.01070.x
– ident: e_1_2_8_107_1
  doi: 10.1016/j.ydbio.2011.12.041
– ident: e_1_2_8_68_1
  doi: 10.1038/ncb2765
– ident: e_1_2_8_64_1
  doi: 10.1038/cr.2012.175
– ident: e_1_2_8_120_1
  doi: 10.1083/jcb.201508056
– ident: e_1_2_8_128_1
  doi: 10.1016/j.canlet.2015.05.029
– ident: e_1_2_8_5_1
  doi: 10.18632/oncotarget.4473
– ident: e_1_2_8_90_1
  doi: 10.1038/nature05384
– ident: e_1_2_8_74_1
  doi: 10.1083/jcb.201011077
– ident: e_1_2_8_125_1
  doi: 10.1038/nature14897
– ident: e_1_2_8_33_1
  doi: 10.1038/nm1297-1337
– ident: e_1_2_8_19_1
  doi: 10.1016/j.stem.2009.11.015
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ydbio.2010.07.008
– ident: e_1_2_8_109_1
  doi: 10.1126/science.282.5391.1145
– ident: e_1_2_8_15_1
  doi: 10.1038/onc.2015.409
– ident: e_1_2_8_31_1
  doi: 10.1002/stem.628
– ident: e_1_2_8_89_1
  doi: 10.1038/ncb2976
– ident: e_1_2_8_96_1
  doi: 10.1096/fj.11-186098
– ident: e_1_2_8_99_1
  doi: 10.1089/scd.2012.0050
– ident: e_1_2_8_104_1
  doi: 10.1016/j.cell.2007.11.019
– ident: e_1_2_8_6_1
  doi: 10.1242/dev.119065
– ident: e_1_2_8_116_1
  doi: 10.1016/j.stem.2016.03.005
– ident: e_1_2_8_26_1
  doi: 10.1016/j.placenta.2015.04.001
– ident: e_1_2_8_69_1
  doi: 10.1016/j.stem.2008.08.017
– ident: e_1_2_8_3_1
  doi: 10.1016/j.devcel.2011.07.005
– ident: e_1_2_8_103_1
  doi: 10.1242/dev.01801
– ident: e_1_2_8_121_1
  doi: 10.1002/dvdy.22778
– ident: e_1_2_8_7_1
  doi: 10.1111/exd.12671
– ident: e_1_2_8_16_1
  doi: 10.1158/0008-5472.CAN-09-1132
– ident: e_1_2_8_53_1
  doi: 10.1634/stemcells.2005-0150
– ident: e_1_2_8_50_1
  doi: 10.2119/molmed.2012.00075
– ident: e_1_2_8_8_1
  doi: 10.1002/stem.467
– ident: e_1_2_8_24_1
  doi: 10.1158/0008-5472.CAN-14-3363
– ident: e_1_2_8_85_1
  doi: 10.1895/wormbook.1.56.2
– ident: e_1_2_8_108_1
  doi: 10.1016/j.cell.2009.11.007
– ident: e_1_2_8_92_1
  doi: 10.1158/0008-5472.CAN-14-3476
– ident: e_1_2_8_10_1
  doi: 10.1083/jcb.201503042
– ident: e_1_2_8_87_1
  doi: 10.1161/01.RES.0000135902.99383.6f
SSID ssj0009933
Score 2.6631176
SecondaryResourceType review_article
Snippet The lineage transition between epithelium and mesenchyme is a process known as epithelial–mesenchymal transition (EMT), by which polarized epithelial cells...
The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3261
SubjectTerms Animals
Biological activity
Cancer
cancer stem cells
Cell Differentiation
Cell Transformation, Neoplastic
Cellular Reprogramming
Differentiation (biology)
Embryogenesis
Embryonic growth stage
EMT
Epithelial cells
Epithelial-Mesenchymal Transition
Epithelium
Humans
Mesenchyme
MET
Metastases
reprogramming
Stem cells
Stem Cells - cytology
Tumorigenesis
Title Epithelial–mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.25797
https://www.ncbi.nlm.nih.gov/pubmed/28079253
https://www.proquest.com/docview/1930913504
https://pubmed.ncbi.nlm.nih.gov/PMC5507753
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UguCLl9bLapVBRFZotslkJpno01K2lEJFpIU-CGFuoavduLjZh_Wp_8F_6C9xzkySda2C-BbImTCZfGfmm8k53wF46ZyPu7lXRpnKdcREkUcyYTZKKmELUbGKMsxGPn2XHZ-zkwt-sQVvu1yYoA_RH7ihZ_j5Gh1cqsXBWjT0k56PHN4KzCTHWC0kRB_W0lFFW0behyBwlnSqQjE96FturkU3CObNOMlf-atfgI7uwseu6yHu5PNo2aiR_vabquN_vts9uNMSUzIOSLoPW7begd1x7TblsxV5RXyoqD-D34FboYLlaheuJ3NM6rhyKP5x_X2GqUz6cjVzD2pwEfTxYGQ4OT17_YaMSVB8QliQeUhQINOauPbErGOX9glqSxP8o0C68i1NANA-kbUhzXKG5bxwkp4uHsD50eTs8DhqizpE2nGTPKJMU5swI5RyzIwZbnmcqtimmTAm00xKYbSMsyqRJs-KzObG7ZW5VCbVXFcqfQjb9ZfaPgaSGGSDPLWOtbDcGEmF2-BSao0Q3DGvAQy7z1vqVvEcC29clUGrmZZunEs_zgN40ZvOg8zHn4z2OoyUracvSkeAUVqVx2wAjwJc-ieg0lDhOjiAfANIvQFqe2_eqaeXXuMbZeZybDn0OPl7p8qTw_f-4sm_mz6F2xTZiY_K2YPt5uvSPnPcqlHPvRP9BDsgI74
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIgQXflp-AgUsBChI3XTXa-8PEoeoTZX-pEIolXpbvLZXTdtsI7IRCqe-A6_Bq_ASPAke725CKEhceuC20o4ty57xfLZnvgF4aYyPm71XOEEaSodFcegIj2nHyyIdRxnLKMNs5N5B0D1ku0f8aAm-1bkwJT_E7MINLcPu12jgeCG9MWcNPZGjllG4OKxCKvf09LM5sI3f7WyZ1X1F6Xanv9l1qpoCjjSuMXQok1R7TEVpaoABU1xz109d7QeRUoFkQkRKCjfIPKHCIA50qMxRjYtU-ZLLLPVNv9fgOlYQR6b-rQ9zsqq4Klxvgx4482oeI5duzIa66P0uQdrLkZm_Imbr8rbvwPd6sspIl9PWpEhb8stvPJL_y2zehdsV9ibt0ljuwZLOV2C1nYvifDglr4mNhrXPDCtwoyzSOV2Fi84I81bOjKH-uPg6xGwteTwdmo4K9PM25I00O73-m7ekTUpSK9R8MipzMMggJ6Y9UfPwrHWC9NkEH01IXaGmKG1knYhckWIyxIpl6IcG4_tweCWz8gCW8_NcPwLiKQS83NcGmLFQKUEjc4anVKso4gZcNqBZ61MiK1J3rC1ylpR01DQx65rYdW3Ai5noqGQy-ZPQWq2USbWZjROD8ZE9lrusAQ9L_Zz1gGRKsRlgA8IFzZ0JIH354p98cGxpzJFJL8SWTauYfx9Usrv53n48_nfR53Cz2-_tJ_s7B3tP4BZFMGaDkNZgufg00U8NlCzSZ9aCCXy8aiX_Caxog78
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQyBu-Nn4KQywEKAiLV3iOH9IXFRrq_2waUKbtLvg2I5WWLOIpkLlau_AY_AqPAVPgo-dtJSBxM0uuIsUx7Lsc3w-x9_5DsBz7XyB3nu5E2aRcFicRA73mHK8PFZJnLOcMsxG3tsPt47YznFwvATfmlwYqw8x--GGnmH2a3TwUuYbc9HQD6LsaHtLoppRuaumn_V5bfxmu6cX9wWlg_7h5pZTlxRwhI6MkUOZoMpjMs4yjQuYDFTg-pmr_DCWMhSM81gK7oa5x2UUJqGKpD6pBTyTvghEnvm63ytwlYVugnUieu_mWlVJXbfecB4C5jUyRi7dmA11MfhdQLQXiZm_AmYT8Qa34HszV5bo8rEzqbKO-PKbjOR_Mpm34WaNvEnXusodWFLFCqx2C16djabkJTFcWHPJsALXbInO6Sqc90vMWjnVbvrj_OsIc7XEyXSkO6owyhvCG2n39w5fvSZdYiWt0O5JaTMwyLAg-nsi5-SsdYLi2QSvTEhTn6ayHrJOeCFJNRlhvTKMQsPxXTi6lFm5B8vFWaEeAPEkwt3AVxqWsUhKTmN9gqdUyTgONLRsQbsxp1TUku5YWeQ0tWLUNNXrmpp1bcGzWdPS6pj8qdFaY5NpvZWNU43wUTs2cFkL7lvznPWAUkqJHmALogXDnTVA8fLFN8XwxIiYo45ehF-2jV3-fVDpzuaBeXj4702fwvWD3iB9u72_-whuUERihoG0BsvVp4l6rHFklT0x_kvg_WXb-E-ftIJu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial%E2%80%93mesenchymal+transition+%28EMT%29%3A+A+biological+process+in+the+development%2C+stem+cell+differentiation%2C+and+tumorigenesis&rft.jtitle=Journal+of+cellular+physiology&rft.au=Chen%2C+Tong&rft.au=You%2C+Yanan&rft.au=Jiang%2C+Hua&rft.au=Wang%2C+Zack+Z.&rft.date=2017-12-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=232&rft.issue=12&rft.spage=3261&rft.epage=3272&rft_id=info:doi/10.1002%2Fjcp.25797&rft.externalDBID=10.1002%252Fjcp.25797&rft.externalDocID=JCP25797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon