Efficient cell delivery mediated by lipid‐specific endosomal escape of supercharged branched peptides

Various densely charged polycationic species, whether of biological or synthetic origin, can penetrate human cells, albeit with variable efficiencies. The molecular underpinnings involved in such transport remain unclear. Herein, we assemble 1, 2 or 3 copies of the HIV peptide TAT on a synthetic sca...

Full description

Saved in:
Bibliographic Details
Published inTraffic (Copenhagen, Denmark) Vol. 19; no. 6; pp. 421 - 435
Main Authors Brock, Dakota J., Kustigian, Lauren, Jiang, Mengqiu, Graham, Kristin, Wang, Ting‐Yi, Erazo‐Oliveras, Alfredo, Najjar, Kristina, Zhang, Junjie, Rye, Hays, Pellois, Jean‐Philippe
Format Journal Article
LanguageEnglish
Published Former Munksgaard John Wiley & Sons A/S 01.06.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Various densely charged polycationic species, whether of biological or synthetic origin, can penetrate human cells, albeit with variable efficiencies. The molecular underpinnings involved in such transport remain unclear. Herein, we assemble 1, 2 or 3 copies of the HIV peptide TAT on a synthetic scaffold to generate branched cell‐permeable prototypes with increasing charge density. We establish that increasing TAT copies dramatically increases the cell penetration efficiency of the peptides while simultaneously enabling the efficient cytosolic delivery of macromolecular cargos. Cellular entry involves the leaky fusion of late endosomal membranes enriched with the anionic lipid BMP. Derivatives with multiple TAT branches induce the leakage of BMP‐containing lipid bilayers, liposomal flocculation, fusion and an increase in lamellarity. In contrast, while the monomeric counterpart 1TAT binds to the same extent and causes liposomal flocculation, 1TAT does not cause leakage, induce fusion or a significant increase in lamellarity. Overall, these results indicate that an increase in charge density of these branched structures leads to the emergence of lipid specific membrane‐disrupting and cell‐penetrating activities. Delivery agents presenting multiple branches of the TAT peptide unlock endosomal escape—a necessary step in the successful cytosolic penetration of cells. Above a threshold charge density, these supercharged species promote contact and restructuring of endosomal membranes enriched with the anionic lipid bis(monoacylglycerol)phosphate. In particular, peptide‐bound membranes undergo leaky fusion, an increase in lamellarity and flocculation. This multifaceted interplay revealed between polycationic peptides and anionic endosomal membranes provides a mechanistic basis for the development of efficient cellular delivery agents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1398-9219
1600-0854
1600-0854
DOI:10.1111/tra.12566