Nucleotide excision repair is a predictor of early relapse in pediatric acute lymphoblastic leukemia

Nucleotide Excision Repair (NER) is a major pathway of mammalian DNA repair that is associated with drug resistance and has not been well characterized in acute lymphoblastic leukemia (ALL). The objective of this study was to explore the role of NER in relapsed ALL patients. We hypothesized that inc...

Full description

Saved in:
Bibliographic Details
Published inBMC medical genomics Vol. 11; no. 1; pp. 95 - 11
Main Authors Ibrahim, Omar M, As Sobeai, Homood M, Grant, Stephen G, Latimer, Jean J
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 30.10.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nucleotide Excision Repair (NER) is a major pathway of mammalian DNA repair that is associated with drug resistance and has not been well characterized in acute lymphoblastic leukemia (ALL). The objective of this study was to explore the role of NER in relapsed ALL patients. We hypothesized that increased expression of NER genes was associated with drug resistance and relapse in ALL. We performed secondary data analysis on two sets of pediatric ALL patients that all ultimately relapsed, and who had matched diagnosis-relapse gene expression microarray data (GSE28460 and GSE18497). GSE28460 included 49 precursor-B-ALL patients, and GSE18497 included 27 precursor-B-ALL and 14 T-ALL patients. Microarray data were processed using the Plier 16 algorithm and the 20 canonical NER genes were extracted. Comparisons were made between time of diagnosis and relapse, and between early and late relapsing subgroups. The Chi-square test was used to evaluate whether NER gene expression was altered at the level of the entire pathway and individual gene expression was compared using t-tests. We found that gene expression of the NER pathway was significantly increased upon relapse in patients that took 3 years or greater to relapse (late relapsers, P = .007), whereas no such change was evident in patients that relapsed in less than 3 years (early relapsers, P = .180). Moreover, at diagnosis, the NER gene expression of the early relapsing subpopulation was already significantly elevated over that of the late relapsing group (P < .001). This pattern was validated by an 'NER score' established by averaging the relative expression of the 20 canonical NER genes. The NER score at diagnosis was found to be significantly associated with disease-free survival in precursor-B-ALL (P < .001). Patients are over two times more likely to undergo early relapse if they have a high NER score at diagnosis, hazard ratio 2.008, 95% CI (1.256-3.211). The NER score may provide a underlying mechanism for "time to remission", a known prognostic factor in ALL, and a rationale for differential treatment.
ISSN:1755-8794
1755-8794
DOI:10.1186/s12920-018-0422-2