The interactions between anthropogenic aerosols and the East Asian summer monsoon using RegCCMS

An online coupled regional climate‐chemistry model called RegCCMS is used to investigate the interactions between anthropogenic aerosols and the East Asian summer monsoon (EASM) over East Asia. The simulation results show that the mean aerosol loading and optical depth over the region are 17.87 mg/m...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Atmospheres Vol. 120; no. 11; pp. 5602 - 5621
Main Authors Wang, T. J., Zhuang, B. L., Li, S., Liu, J., Xie, M., Yin, C. Q., Zhang, Y., Yuan, C., Zhu, J. L., Ji, L. Q., Han, Y.
Format Journal Article
LanguageEnglish
Published 16.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An online coupled regional climate‐chemistry model called RegCCMS is used to investigate the interactions between anthropogenic aerosols and the East Asian summer monsoon (EASM) over East Asia. The simulation results show that the mean aerosol loading and optical depth over the region are 17.87 mg/m2 and 0.25, respectively. Sulfate and black carbon (BC) account for approximately 61.2% and 7.8% of the total aerosols, respectively. The regional mean radiative forcing (RF) is approximately −3.64, −0.55, and +0.88 W/m2 at the top of the atmosphere for the total aerosol effect, the total aerosol direct effect, and the BC direct effect, respectively. The surface direct RF of BC accounts for approximately 31% of the total RF of all aerosols. Because of the total aerosol effect, both the energy budgets and air temperature are considerably reduced in the region with high aerosol loadings, leading to decreases in the land‐ocean air temperature gradient in summer. The total column‐absorbed solar radiation and surface air temperature decrease by 8.4 W/m2 and 0.31 K, respectively. This cooling effect weakens horizontal and vertical atmospheric circulations over East Asia. The wind speed at 850 hPa decreases by 0.18 m/s, and the precipitation decreases by 0.29 mm/d. The small responses of solar radiation, air temperature, and atmospheric circulations to the BC warming effect are opposite to those of the total aerosol effect. The BC‐induced enhancement of atmospheric circulation can increase local floods in south China, while droughts in north China may worsen in response to the BC semidirect effect. The total aerosol effect is much more significant than the BC direct effect. The East Asian summer monsoon becomes weaker due to the total aerosol effect. However, this weakness could be partially offset by the BC warming effect. Sensitivity analyses further indicate that the influence of aerosols on the EASM might be more substantial in years when the southerlies or southwesterlies at 850 hPa are weak compared with years when the winds are strong. Changes in the EASM can induce variations in the distribution and magnitude of aerosols. Aerosols in the lower troposphere over the region can increase by 3.07 and 1.04 µg/m3 due to the total aerosol effect and the BC warming effect, respectively. Key Points Online RegCCMS is used to investigate the interactions between aerosol and EASM EASM got weak due to total aerosols, and the weakness was partially offset by BC Changes in EASM lead to increases in each aerosol from surface to low layers
ISSN:2169-897X
2169-8996
DOI:10.1002/2014JD022877