Indole‐3‐carbinol inhibits MDA‐MB‐231 breast cancer cell motility and induces stress fibers and focal adhesion formation by activation of Rho kinase activity

Indole‐3‐carbinol (I3C), a phytochemical derived from cruciferous vegetables such as broccoli and Brussels sprouts, has potent antiproliferative effects in human breast cancer cells and has been shown to decrease metastatic spread of tumors in experimental animals. Using chemotaxis and fluorescent‐b...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cancer Vol. 124; no. 10; pp. 2294 - 2302
Main Authors Brew, Christine T., Aronchik, Ida, Kosco, Karena, McCammon, Jasmine, Bjeldanes, Leonard F., Firestone, Gary L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.05.2009
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Indole‐3‐carbinol (I3C), a phytochemical derived from cruciferous vegetables such as broccoli and Brussels sprouts, has potent antiproliferative effects in human breast cancer cells and has been shown to decrease metastatic spread of tumors in experimental animals. Using chemotaxis and fluorescent‐bead cell motility assays, we demonstrated that I3C significantly decreased the in vitro migration of MDA‐MB‐231 cells, a highly invasive breast cancer cell line. Immunofluorescence staining of the actin cytoskeleton revealed that concurrent with the loss of cell motility, I3C treatment significantly increased stress fiber formation. Furthermore, I3C induced the localization of the focal adhesion component vinculin and tyrosine‐phosphorylated proteins to the cell periphery, which implicates an indole‐dependent enhancement of focal adhesions within the outer boundary of the cells. Coimmunoprecipitation analysis of focal adhesion kinase demonstrated that I3C stimulated the dynamic formation of the focal adhesion protein complex without altering the total level of individual focal adhesion proteins. The RhoA‐Rho kinase pathway is involved in stress fiber and focal adhesion formation, and I3C treatment stimulated Rho kinase enzymatic activity and cofilin phosphorylation, which is a downstream target of Rho kinase signaling, but did not increase the level of active GTP‐bound RhoA. Exposure of MDA‐MB‐231 cells to the Rho kinase inhibitor Y‐27632, or expression of dominant negative RhoA ablated the I3C induced formation of stress fibers and of peripheral focal adhesions. Expression of constitutively active RhoA mimicked the I3C effects on both processes. Taken together, our data demonstrate that I3C induces stress fibers and peripheral focal adhesions in a Rho kinase‐dependent manner that leads to an inhibition of motility in human breast cancer cells. © 2008 Wiley‐Liss, Inc.
Bibliography:Fax: +510‐643‐6791
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-7136
1097-0215
DOI:10.1002/ijc.24210