Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding

ABSTRACT The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerizat...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 85; no. 4; pp. 561 - 570
Main Authors Taylor, Eric S., Pol‐Fachin, Laercio, Lins, Roberto D., Lower, Steven K.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N‐glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF–EGFR binding takes place through a large‐scale induced‐fitting mechanism. Proteins 2017; 85:561–570. © 2016 Wiley Periodicals, Inc.
Bibliography:This work was performed at The Ohio State University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.25220