Modulating the resting-state functional connectivity patterns of language processing areas in the human brain with anodal transcranial direct current stimulation applied over the Broca's area

Cortical circuit reorganization induced by anodal transcranial direct current stimulation (tDCS) over the Broca's area of the dominant language hemisphere in 13 healthy adults was quantified by functional near-infrared spectroscopy (fNIRS). Transient cortical reorganization patterns in steady-s...

Full description

Saved in:
Bibliographic Details
Published inNeurophotonics (Print) Vol. 5; no. 2; p. 025002
Main Authors Cao, Jianwei, Liu, Hanli, Alexandrakis, George
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cortical circuit reorganization induced by anodal transcranial direct current stimulation (tDCS) over the Broca's area of the dominant language hemisphere in 13 healthy adults was quantified by functional near-infrared spectroscopy (fNIRS). Transient cortical reorganization patterns in steady-state functional connectivity (seed-based and graph theory analysis) and temporal functional connectivity (sliding window correlation analysis) were recorded before, during, and after applying high current tDCS (1 mA, 8 min). fNIRS connectivity mapping showed that tDCS induced significantly (p  <  0.05) increased functional connectivity between Broca's area and its neighboring cortical regions while it simultaneously decreased the connectivity to remote cortical regions. Furthermore, the anodal stimulation caused significant increases to the functional connectivity variability (FCV) of remote cortical regions related to language processing. In addition to the high current tDCS, low current tDCS (0.5 mA, 2 min 40 s) was also applied to test whether the transient effects of lower stimulation current could qualitatively predict cortical connectivity alterations induced by the higher currents. Interestingly, low current tDCS could qualitatively predict the increase in clustering coefficient and FCV but not the enhancement of local connectivity. Our findings indicate the possibility of combining future studies fNIRS with tDCS at lower currents to help guide therapeutic interventions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2329-423X
2329-4248
DOI:10.1117/1.NPh.5.2.025002