Self-assembly of dynamic orthoester cryptates

The discovery of coronands and cryptands, organic compounds that can accommodate metal ions in a preorganized two- or three-dimensional environment, was a milestone in supramolecular chemistry, leading to countless applications from organic synthesis to metallurgy and medicine. These compounds are t...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 7129
Main Authors Brachvogel, René-Chris, Hampel, Frank, von Delius, Max
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.05.2015
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The discovery of coronands and cryptands, organic compounds that can accommodate metal ions in a preorganized two- or three-dimensional environment, was a milestone in supramolecular chemistry, leading to countless applications from organic synthesis to metallurgy and medicine. These compounds are typically prepared via multistep organic synthesis and one of their characteristic features is the high stability of their covalent framework. Here we report the use of a dynamic covalent exchange reaction for the one-pot template synthesis of a new class of coronates and cryptates, in which acid-labile O , O , O -orthoesters serve as bridgeheads. In contrast to their classic analogues, the compounds described herein are constitutionally dynamic in the presence of acid and can be induced to release their guest via irreversible deconstruction of the cage. These properties open up a wide range of application opportunities, from systems chemistry to molecular sensing and drug delivery. Cryptands and related molecules are macrocyclic polyethers capable of strongly binding cations. Here, the authors use orthoester exchange for the dynamic one-pot synthesis of crypates, which can bind cations and, given their constitutionally dynamic nature, can also be decomposed to release their guest.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms8129