On the water delivery to terrestrial embryos by ice pebble accretion

Standard accretion disk models suggest that the snow line in the solar nebula migrated interior to the Earth’s orbit in a late stage of nebula evolution. In this late stage, a significant amount of ice could have been delivered to 1 AU from outer regions in the form of mm to dm-sized pebbles. This r...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 589; p. A15
Main Authors Sato, Takao, Okuzumi, Satoshi, Ida, Shigeru
Format Journal Article
LanguageEnglish
Published EDP Sciences 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Standard accretion disk models suggest that the snow line in the solar nebula migrated interior to the Earth’s orbit in a late stage of nebula evolution. In this late stage, a significant amount of ice could have been delivered to 1 AU from outer regions in the form of mm to dm-sized pebbles. This raises the question why the present Earth is so depleted of water (with the ocean mass being as small as 0.023% of the Earth mass). Here we quantify the amount of icy pebbles accreted by terrestrial embryos after the migration of the snow line assuming that no mechanism halts the pebble flow in outer disk regions. We use a simplified version of the coagulation equation to calculate the formation and radial inward drift of icy pebbles in a protoplanetary disk. The pebble accretion cross section of an embryo is calculated using analytic expressions presented by recent studies. We find that the final mass and water content of terrestrial embryos strongly depends on the radial extent of the gas disk, the strength of disk turbulence, and the time at which the snow lines arrives at 1 AU. The disk’s radial extent sets the lifetime of the pebble flow, while turbulence determines the density of pebbles at the midplane where the embryos reside. We find that the final water content of the embryos falls below 0.023 wt% only if the disk is compact (<100 AU), turbulence is strong at 1 AU, and the snow line arrives at 1 AU later than 2–4 Myr after disk formation. If the solar nebula extended to 300 AU, initially rocky embryos would have evolved into icy planets of 1–10 Earth masses unless the snow-line migration was slow. If the proto-Earth contained water of ~1 wt% as might be suggested by the density deficit of the Earth’s outer core, the formation of the proto-Earth was possible with weaker turbulence and with earlier (>0.5–2 Myr) snow-line migration.
Bibliography:e-mail: okuzumi@geo.titech.ac.jp
istex:A800BCA6B59993BCC6E07163554FBF1B0B869571
ark:/67375/80W-SX5T8QQR-W
publisher-ID:aa27069-15
bibcode:2016A%26A...589A..15S
dkey:10.1051/0004-6361/201527069
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201527069