Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme

Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate tha...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 8758
Main Authors Yun, Choong-Soo, Motoyama, Takayuki, Osada, Hiroyuki
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.10.2015
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. Tenuazonic acid is a mycotoxin produced by various plant pathogenic fungi but its biosynthetic gene is unknown to date. Here, the authors identify the tenuazonic acid biosynthetic gene encoding a protein with a unique KS domain that conducts cyclization step for tenuazonic acid release in Magnaporthe oryzae .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms9758