An autism-associated serotonin transporter variant disrupts multisensory processing

Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory devel...

Full description

Saved in:
Bibliographic Details
Published inTranslational psychiatry Vol. 7; no. 3; p. e1067
Main Authors Siemann, J K, Muller, C L, Forsberg, C G, Blakely, R D, Veenstra-VanderWeele, J, Wallace, M T
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.03.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2158-3188
2158-3188
DOI:10.1038/tp.2017.17