Oxidatively modified LDL particles in the human placenta in early and late onset intrauterine growth restriction

Reduced serum LDL concentrations have been observed in pregnancies complicated by intrauterine growth restriction (IUGR) as compared to healthy pregnant women. Since increased oxidative stress has been suggested to play a major role in IUGR we now hypothesized that the lower LDL concentrations are a...

Full description

Saved in:
Bibliographic Details
Published inPlacenta (Eastbourne) Vol. 34; no. 12; pp. 1142 - 1149
Main Authors Pecks, U., Rath, W., Caspers, R., Sosnowsky, K., Ziems, B., Thiesen, H.-J., Maass, N., Huppertz, B.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reduced serum LDL concentrations have been observed in pregnancies complicated by intrauterine growth restriction (IUGR) as compared to healthy pregnant women. Since increased oxidative stress has been suggested to play a major role in IUGR we now hypothesized that the lower LDL concentrations are accompanied by an accumulation of oxidized LDLs in the placenta. Fifteen placentas of near term and preterm born IUGR, and a gestational age matched control group (CTRL n = 15) were analyzed. Placental minimal modified LDL and fully oxidized LDL particles were measured by ELISA, and by immunohistochemistry, and were related to maternal and fetal serum lipid profiles. We found fully oxidized LDL but not minimal modified LDL being increased in the preterm subgroup of IUGR (n = 10) as compared to preterm CTRL (n = 10; p < 0.05). An increased staining intensity of trophoblasts in preterm IUGR subjects as compared to preterm CTRL has been confirmed by immunohistochemistry (p < 0.05). No difference could be found between the term groups (n = 5 each). Correlation analysis revealed an inverse relationship of maternal LDL (ρ = −0.49, p = 0.03) and fetal HDL cholesterol (ρ = −0.46, p = 0.04) with placental fully oxidized LDL particle concentration within preterms. IUGR is a heterogeneous entity. Different pathomechanisms seem to underlie the disease in preterm and term subjects with oxidation of LDL within the placenta possibly taking place in preterm IUGRs. We conclude that the reduced maternal LDL cholesterol concentration in IUGR pregnancies is attributed to increased accumulation of oxidized LDL particles within the placenta at least in early onset IUGR.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0143-4004
1532-3102
1532-3102
DOI:10.1016/j.placenta.2013.10.006