The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling

Inappropriate activation of developmental pathways is a well-recognized tumor-promoting mechanism. Here we show that overexpression of the homeoprotein Six1, normally a developmentally restricted transcriptional regulator, increases TGF-beta signaling in human breast cancer cells and induces an epit...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 119; no. 9; pp. 2678 - 2690
Main Authors Micalizzi, Douglas S, Christensen, Kimberly L, Jedlicka, Paul, Coletta, Ricardo D, Barón, Anna E, Harrell, J Chuck, Horwitz, Kathryn B, Billheimer, Dean, Heichman, Karen A, Welm, Alana L, Schiemann, William P, Ford, Heide L
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 01.09.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inappropriate activation of developmental pathways is a well-recognized tumor-promoting mechanism. Here we show that overexpression of the homeoprotein Six1, normally a developmentally restricted transcriptional regulator, increases TGF-beta signaling in human breast cancer cells and induces an epithelial-mesenchymal transition (EMT) that is in part dependent on its ability to increase TGF-beta signaling. TGF-beta signaling and EMT have been implicated in metastatic dissemination of carcinoma. Accordingly, we used spontaneous and experimental metastasis mouse models to demonstrate that Six1 overexpression promotes breast cancer metastasis. In addition, we show that, like its induction of EMT, Six1-induced experimental metastasis is dependent on its ability to activate TGF-beta signaling. Importantly, in human breast cancers Six1 correlated with nuclear Smad3 and thus increased TGF-beta signaling. Further, breast cancer patients whose tumors overexpressed Six1 had a shortened time to relapse and metastasis and an overall decrease in survival. Finally, we show that the effects of Six1 on tumor progression likely extend beyond breast cancer, since its overexpression correlated with adverse outcomes in numerous other cancers including brain, cervical, prostate, colon, kidney, and liver. Our findings indicate that Six1, acting through TGF-beta signaling and EMT, is a powerful and global promoter of cancer metastasis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9738
1558-8238
DOI:10.1172/JCI37815