Investigation of the Immunogenicity of Different Types of Aggregates of a Murine Monoclonal Antibody in Mice

Purpose The potential contribution of protein aggregates to the unwanted immunogenicity of protein pharmaceuticals is a major concern. In the present study a murine monoclonal antibody was utilized to study the immunogenicity of different types of aggregates in mice. Samples containing defined types...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical research Vol. 32; no. 2; pp. 430 - 444
Main Authors Freitag, Angelika J., Shomali, Maliheh, Michalakis, Stylianos, Biel, Martin, Siedler, Michael, Kaymakcalan, Zehra, Carpenter, John F., Randolph, Theodore W., Winter, Gerhard, Engert, Julia
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose The potential contribution of protein aggregates to the unwanted immunogenicity of protein pharmaceuticals is a major concern. In the present study a murine monoclonal antibody was utilized to study the immunogenicity of different types of aggregates in mice. Samples containing defined types of aggregates were prepared by processes such as stirring, agitation, exposure to ultraviolet (UV) light and exposure to elevated temperatures. Methods Aggregates were analyzed by size-exclusion chromatography, light obscuration, turbidimetry, infrared (IR) spectroscopy and UV spectroscopy. Samples were separated into fractions based on aggregate size by asymmetrical flow field-flow fractionation or by centrifugation. Samples containing different types and sizes of aggregates were subsequently administered to C57BL/6 J and BALB/c mice, and serum was analyzed for the presence of anti-IgG1, anti-IgG2a, anti-IgG2b and anti-IgG3 antibodies. In addition, the pharmacokinetic profile of the murine antibody was investigated. Results In this study, samples containing high numbers of different types of aggregates were administered in order to challenge the in vivo system. The magnitude of immune response depends on the nature of the aggregates. The most immunogenic aggregates were of relatively large and insoluble nature, with perturbed, non-native structures. Conclusion This study shows that not all protein drug aggregates are equally immunogenic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0724-8741
1573-904X
DOI:10.1007/s11095-014-1472-6