Empagliflozin and Renal Sodium-Hydrogen Exchange in Healthy Subjects

Abstract Context Sodium glucose co-transporter-2 inhibitors exert clinically relevant cardiorenal protection. Among several mechanisms, inhibition of sodium-hydrogen exchanger-3 (NHE3) in proximal renal tubules has been proposed in rodents. Demonstration of this mechanism with the associated electro...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 108; no. 8; pp. e567 - e573
Main Authors Biancalana, Edoardo, Rossi, Chiara, Raggi, Francesco, Distaso, Mariarosaria, Tricò, Domenico, Baldi, Simona, Ferrannini, Ele, Solini, Anna
Format Journal Article
LanguageEnglish
Published US Oxford University Press 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Context Sodium glucose co-transporter-2 inhibitors exert clinically relevant cardiorenal protection. Among several mechanisms, inhibition of sodium-hydrogen exchanger-3 (NHE3) in proximal renal tubules has been proposed in rodents. Demonstration of this mechanism with the associated electrolyte and metabolic changes in humans is lacking. Objective The present proof-of-concept study was designed to explore the involvement of NHE3 in modulating the response to sodium glucose co-transporter-2 inhibitors in humans. Methods Twenty healthy male volunteers received 2 tablets of empagliflozin 25 mg during a standardized hydration scheme; freshly voided urines and blood samples were collected at timed intervals for 8 hours. Protein expression of relevant transporters was examined in exfoliated tubular cells. Results Urine pH levels increased after empagliflozin (from 5.81 ± 0.5 to 6.16 ± 0.6 at 6 hours, P = .008) as did urinary output (from median, 1.7; interquartile range [IQR, 0.6; 2.5] to 2.5 [IQR, 1.7; 3.5] mL/min−1, P = .008) and glucose (from median, 0.03 [IQR, 0.02; 0.04] to 34.8 [IQR, 31.6; 40.2] %, P < .0001), and sodium fractional excretion rates (from median, 0.48 [IQR, 0.34; 0.65] to 0.71 [IQR, 0.55; 0.85] %, P = .0001), whereas plasma glucose and insulin concentrations decreased and plasma and urinary ketones increased. Nonsignificant changes in NHE3, phosphorylated NHE3, and membrane-associated protein 17 protein expression were detected in urinary exfoliated tubular cells. In a time-control study in 6 participants, neither urine pH nor plasma and urinary parameters changed. Conclusions In healthy young volunteers, empagliflozin acutely increases urinary pH while inducing a substrate shift toward lipid utilization and ketogenesis, without significant changes in renal NHE3 protein expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-972X
1945-7197
1945-7197
DOI:10.1210/clinem/dgad088