Modeling a healthy and a person with heart failure conditions using the object-oriented modeling environment Dymola

Several mathematical models of different physiological systems are spread through literature. They serve as tools which improve the understanding of (patho-) physiological processes, may help to meet clinical decisions and can even enhance medical therapies. These models are typically implemented in...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 53; no. 10; pp. 1049 - 1068
Main Authors Heinke, Stefanie, Pereira, Carina, Leonhardt, Steffen, Walter, Marian
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Several mathematical models of different physiological systems are spread through literature. They serve as tools which improve the understanding of (patho-) physiological processes, may help to meet clinical decisions and can even enhance medical therapies. These models are typically implemented in a signal-flow-oriented simulation environment and focus on the behavior of one specific subsystem. Neglecting other physiological subsystems and using a technical description of the physiology hinders the exchange with and acceptance of clinicians. By contrast, this paper presents a new model implemented in a physical, object-oriented modeling environment which includes the cardiovascular, respiratory and thermoregulatory system. Simulation results for a healthy subject at rest and at the onset of exercise are given, showing the validity of the model. Finally, simulation results showing the interaction of the cardiovascular system with a ventricular assist device in case of heart failure are presented showing the flexibility and mightiness of the model and the simulation environment. Thus, we present a new model including three important physiological systems and one medical device implemented in an innovative simulation environment.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0140-0118
1741-0444
1741-0444
DOI:10.1007/s11517-015-1384-6