Indole inhibited the expression of csrA gene in Escherichia coli
Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycoge...
Saved in:
Published in | Journal of general and applied microbiology Vol. 69; no. 5; pp. 239 - 248 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
01.01.2023
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0022-1260 1349-8037 |
DOI | 10.2323/jgam.2023.06.007 |
Cover
Abstract | Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole. |
---|---|
AbstractList | Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole. |
ArticleNumber | 2023.06.007 |
Author | Guo, Huiying Shi, Zhenxia Zheng, Jing Zuo, Guocai Zhou, Zhiguo Sun, Zemin Feng, Yongjun |
Author_xml | – sequence: 1 fullname: Zuo, Guocai organization: School of Life Science, Langfang Normal University – sequence: 1 fullname: Shi, Zhenxia organization: School of Life Science, Langfang Normal University – sequence: 1 fullname: Guo, Huiying organization: School of Life Science, Langfang Normal University – sequence: 1 fullname: Sun, Zemin organization: School of Life Science, Beijing Institute of Technology – sequence: 1 fullname: Zheng, Jing organization: School of Life Science, Langfang Normal University – sequence: 1 fullname: Feng, Yongjun organization: School of Life Science, Beijing Institute of Technology – sequence: 1 fullname: Zhou, Zhiguo organization: School of Life Science, Langfang Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37423745$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkE1PwzAMhiM0xD7gzglV4tzhJk3S3pimDSZN4gLnKE3dNVXXjqST4N_TqjBxsH15Hlt-52TStA0Sch_BkjLKnqqDPi4pULYEsQSQV2QWsTgNE2ByQmYAlIYRFTAlc-8rACZoEt-QKZMx7YvPyPOuydsaA9uUNrMd5kFXYoBfJ4fe27YJ2iIw3q2CAzYDFWy8KdFZU1odmLa2t-S60LXHu9-5IB_bzfv6Ndy_vezWq31oOCRdmFKRCpFikRWgM4hQSMwl5zItYpqITOYSaCp4gZyxpDBG5zyJEEQKMjIG2II8jntPrv08o-9U1Z5d059UDHgsKZdM9tTDL3XOjpirk7NH7b7V38M9ACNgXOu9w-KCRKCGTNWQqRoyVSBUn2mvbEel8p0-4EXQrrOmxlEQqeJD-ydeAFNqp7BhPxUwgJA |
Cites_doi | 10.1007/s12275-015-5273-3 10.1371/journal.pone.0158200 10.1038/ncomms11667 10.1093/ajcp/26.11_ts.1373 10.1111/j.1365-2958.2007.05765.x 10.1128/jb.75.6.682-690.1958 10.1074/jbc.270.49.29096 10.1111/j.1365-2958.2008.06411.x 10.1128/msystems.00202-22 10.1128/microbiolspec.RWR-0009-2017 10.1111/j.1365-2958.2005.04902.x 10.1038/msb4100050 10.2323/jgam.2018.03.002 10.1002/jobm.201700027 10.1186/1471-2180-12-233 10.3184/003685007X215922 10.1128/mBio.00533-19 10.1046/j.1365-2958.2002.02982.x 10.1128/jb.175.15.4744-4755.1993 10.1093/femsle/fnz166 10.1006/mben.2001.0196 10.1074/jbc.M804544200 10.1128/mBio.01034-19 10.1073/pnas.120163297 10.1128/mBio.01042-19 10.1111/j.1574-6976.2009.00204.x 10.1128/msystems.01043-22 10.1002/jobm.201400472 10.1093/jambio/lxad045 10.1002/9780470122877.ch6 10.1016/0378-1119(95)00193-A 10.1038/nature09354 10.1016/0378-1119(95)00584-1 10.1038/nbt0596-620 10.1038/s41467-017-01613-1 10.1080/21505594.2022.2073023 10.1016/0378-1119(85)90120-9 10.1128/IAI.74.1.331-339.2006 10.1038/ismej.2017.23 10.1128/br.36.4.478-503.1972 10.1128/AEM.07454-11 10.1105/tpc.7.7.921 10.1016/S0167-7012(98)00103-1 10.1111/j.1751-7915.2008.00061.x 10.1002/bies.201600203 10.1046/j.1365-2958.2001.02380.x |
ContentType | Journal Article |
Copyright | 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Copyright Japan Science and Technology Agency 2023 |
Copyright_xml | – notice: 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation – notice: Copyright Japan Science and Technology Agency 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7U7 8FD C1K FR3 M7N P64 RC3 |
DOI | 10.2323/jgam.2023.06.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1349-8037 |
EndPage | 248 |
ExternalDocumentID | 37423745 10_2323_jgam_2023_06_007 article_jgam_69_5_69_2023_06_007_article_char_en |
Genre | Journal Article |
GroupedDBID | --- -~X .GJ 123 2WC 53G ACPRK ADBBV AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 EBS EJD F5P JSF JSH KQ8 OK1 P2P RJT RZJ TKC TR2 VH1 ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7U7 8FD C1K FR3 M7N P64 RC3 |
ID | FETCH-LOGICAL-c508t-9269669efbf0ab01e67ed75579f4286b7d702965fe5338fccad581e069071cc03 |
ISSN | 0022-1260 |
IngestDate | Mon Jun 30 09:57:23 EDT 2025 Wed Feb 19 02:06:25 EST 2025 Tue Jul 01 02:29:57 EDT 2025 Wed Sep 03 06:31:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | csrA Regulation Escherichia coli Indole |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-9269669efbf0ab01e67ed75579f4286b7d702965fe5338fccad581e069071cc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.06.007/_article/-char/en |
PMID | 37423745 |
PQID | 3054725737 |
PQPubID | 2029108 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3054725737 pubmed_primary_37423745 crossref_primary_10_2323_jgam_2023_06_007 jstage_primary_article_jgam_69_5_69_2023_06_007_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of general and applied microbiology |
PublicationTitleAlternate | J. Gen. Appl. Microbiol. |
PublicationYear | 2023 |
Publisher | Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Japan Science and Technology Agency |
Publisher_xml | – name: Applied Microbiology, Molecular and Cellular Biosciences Research Foundation – name: Japan Science and Technology Agency |
References | Lee, H. H., Molla, M. N., Cantor, C. R., and Collins, J. J. (2010) Bacterial charity work leads to population-wide resistance. Nature, 467, 82–85. Lee, J., Attila, C., Cirillo, S. L., Cirillo, J. D., and Wood, T. K. (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotech., 2, 75–90. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning, New York: Cold Spring Harbor Laboratory Press. Oshiro, R. T., Rajendren, S., Hundley, H. A., and Kearns, D. B. (2019) Robust Stoichiometry of FliW-CsrA Governs Flagellin Homeostasis and Cytoplasmic Organization in Bacillus subtilis. mBio, 10, e00533-19. Sabnis, N. A., Yang, H., and Romeo, T. (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J. Biol. Chem., 270, 29096–29104. Tomberlin, J. K., Crippen, T. L., Wu, G., Griffin, A. S., Wood, T. K., and Kilner, R. M. (2017) Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays, 39. Yu, M. and Zhao, Y. (2023) The posttranscriptional regulator CsrA affects multidrug resistance and biocontrol activity in Lysobacter enzymogenes. J. Appl. Microbiol., 134, lxad045. Klauck, E., Typas, A., and Hengge, R. (2007) The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci. Prog., 90, 103–127. Nikaido, E., Yamaguchi, A., and Nishino, K. (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J. Biol. Chem., 283, 24245–24253. Zheng, J., Yu, J., Jia, M., Zheng, L., and Feng, Y. (2017) Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. J. Basic Microbiol., 57, 633–639. Xi, C., Lambrecht, M., Vanderleyden, J., and Michiels, J. (1999) Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J. Microbiol. Methods., 35, 85–92. Lee, J. H. and Lee, J. (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 34, 426–444. Zheng, J., Xia, Y., Liu, Q., He, X., Yu, J., and Feng, Y. (2019b) Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol., 65, 11–17. Cherepanov, P. P. and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158, 9–14. Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA., 97, 6640–6645. Gabriel, S. and Gadebusch, H. H. (1956) Modified stable Kovacs' reagent for the detection of indol. Am. J. Clin. Pathol., 26, 1373–1375. Henrichsen, J. (1972) Bacterial surface translocation: a survey and a classification. Bacteriol. Rev., 36, 478–503. Flores, N., Xiao, J., Berry, A., Bolivar, F., and Valle, F. (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol., 14, 620–623. Sun, Z., Zhou, N., Zhang, W., Xu, Y., and Yao, Y. F. (2022) Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence, 13, 859–874. Gratani, F. L., Englert, T., Nashier, P., Sass, P., Czech, L., Neumann, N., Doello, S., Mann, P., Blobelt, R., Alberti, S., Forchhammer, K., Bange, G., Höfer, K., and Macek, B. (2023) E. coli Toxin YjjJ (HipH) Is a Ser/Thr Protein Kinase That Impacts Cell Division, Carbon Metabolism, and Ribosome Assembly. mSystems, 8, e0104322. Snell E. E. (1975) Tryptophanase: structure, catalytic activities, and mechanism of action. Adv. Enzymol. Relat. Areas. Mol. Biol., 42, 287–333. Lenz, D. H., Miller, M. B., Zhu, J., Kulkarni, R. V., and Bassler, B. L. (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol., 58, 1186–1202. Jiang, J., Wu, S., Wang, J., and Feng, Y. (2015) AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic. Microb., 55, 607–616. Isenberg, H. D. and Sundheim, L. H. (1958) Indole reactions in bacteria. J. Bacteriol., 75, 682–690. Pourciau, C., Pannuri, A., Potts, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2019) Regulation of Iron Storage by CsrA Supports Exponential Growth of Escherichia coli. mBio, 10, e01034-19. Radwanski, E. R. and Last, R. L. (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell, 7, 921–934. Kim, J. and Park, W. (2015) Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J. Microbiol. (Seoul, Korea), 53, 421–428. Fortune, D. R., Suyemoto, M., and Altier, C. (2006) Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect. Immun., 74, 331–339. Zheng, J., Liu, Q., Xia, Y., Bai, L., and Feng, Y. (2019a) Pantoea agglomerans YS19 poly(A) polymerase I gene possesses the indole-sensing sequence in the promoter region. FEMS Microbiol. Lett., 366, fnz166. Dugar, G., Svensson, S. L., Bischler, T., Wäldchen, S., Reinhardt, R., Sauer, M., and Sharma, C. M. (2016) The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nature Ccommun., 7, 11667. Fields, J. A. and Thompson, S. A. (2012) Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation. BMC Microbiol., 12, 233. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd, and Peterson, K. M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–176. Potts, A. H., Vakulskas, C. A., Pannuri, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2017) Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nature Commun., 8, 1596. Bongaerts, J., Krämer, M., Müller, U., Raeven, L., and Wubbolts, M. (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng., 3, 289–300. Romeo, T. and Babitzke, P. (2018) Global Regulation by CsrA and Its RNA Antagonists. Microbiol. Spectr., 6. Samad, T., Billings, N., Birjiniuk, A., Crouzier, T., Doyle, P. S., and Ribbeck, K. (2017) Swimming bacteria promote dispersal of non-motile staphylococcal species. ISME J., 11, 1933–1937. Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Prüss, B. M., Babitzke, P., and Romeo, T. (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol., 40, 245–256. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103–119. Yakhnin, H., Pandit, P., Petty, T. J., Baker, C. S., Romeo, T., and Babitzke, P. (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol. Microbiol., 64, 1605–1620. Jonas, K., Edwards, A. N., Simm, R., Romeo, T., Römling, U., and Melefors, O. (2008) The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol. Microbiol., 70, 236–257. Zacharia, A., Pal, R. R., Katsowich, N., Mannully, C. T., Ibrahim, A., Alfandary, S., Serruya, R., Baidya, A. K., Ben-Yehuda, S., Rosenshine, I., and Moussaieff, A. (2022) Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems, 7, e0020222. Butz, H. A., Mey, A. R., Ciosek, A. L., and Payne, S. M. (2019) Vibrio cholerae CsrA Directly Regulates varA To Increase Expression of the Three Nonredundant Csr Small RNAs. mBio, 10, e01042-19. Baker, C. S., Morozov, I., Suzuki, K., Romeo, T., and Babitzke, P. (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol. Microbiol., 44, 1599–1610. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol., 2, 2006.0008. Romeo, T., Gong, M., Liu, M. Y., and Brun-Zinkernagel, A. M. (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol., 175, 4744–4755. Liu, L., Duan, X., and Wu, J. (2016) L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway. PloS ONE, 11, e0158200. Fink, R. C., Black, E. P., Hou, Z., Sugawara, M., Sadowsky, M. J., and Diez-Gonzalez, F. (2012) Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl. Environ. Microb., 78, 1752–1764. 22 44 23 45 24 46 25 47 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: Fields, J. A. and Thompson, S. A. (2012) Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation. BMC Microbiol., 12, 233. – reference: Kim, J. and Park, W. (2015) Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J. Microbiol. (Seoul, Korea), 53, 421–428. – reference: Baker, C. S., Morozov, I., Suzuki, K., Romeo, T., and Babitzke, P. (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol. Microbiol., 44, 1599–1610. – reference: Zheng, J., Xia, Y., Liu, Q., He, X., Yu, J., and Feng, Y. (2019b) Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol., 65, 11–17. – reference: Oshiro, R. T., Rajendren, S., Hundley, H. A., and Kearns, D. B. (2019) Robust Stoichiometry of FliW-CsrA Governs Flagellin Homeostasis and Cytoplasmic Organization in Bacillus subtilis. mBio, 10, e00533-19. – reference: Radwanski, E. R. and Last, R. L. (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell, 7, 921–934. – reference: Gratani, F. L., Englert, T., Nashier, P., Sass, P., Czech, L., Neumann, N., Doello, S., Mann, P., Blobelt, R., Alberti, S., Forchhammer, K., Bange, G., Höfer, K., and Macek, B. (2023) E. coli Toxin YjjJ (HipH) Is a Ser/Thr Protein Kinase That Impacts Cell Division, Carbon Metabolism, and Ribosome Assembly. mSystems, 8, e0104322. – reference: Sun, Z., Zhou, N., Zhang, W., Xu, Y., and Yao, Y. F. (2022) Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence, 13, 859–874. – reference: Yakhnin, H., Pandit, P., Petty, T. J., Baker, C. S., Romeo, T., and Babitzke, P. (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol. Microbiol., 64, 1605–1620. – reference: Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd, and Peterson, K. M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–176. – reference: Samad, T., Billings, N., Birjiniuk, A., Crouzier, T., Doyle, P. S., and Ribbeck, K. (2017) Swimming bacteria promote dispersal of non-motile staphylococcal species. ISME J., 11, 1933–1937. – reference: Bongaerts, J., Krämer, M., Müller, U., Raeven, L., and Wubbolts, M. (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng., 3, 289–300. – reference: Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol., 2, 2006.0008. – reference: Lee, J. H. and Lee, J. (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 34, 426–444. – reference: Romeo, T., Gong, M., Liu, M. Y., and Brun-Zinkernagel, A. M. (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol., 175, 4744–4755. – reference: Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning, New York: Cold Spring Harbor Laboratory Press. – reference: Butz, H. A., Mey, A. R., Ciosek, A. L., and Payne, S. M. (2019) Vibrio cholerae CsrA Directly Regulates varA To Increase Expression of the Three Nonredundant Csr Small RNAs. mBio, 10, e01042-19. – reference: Romeo, T. and Babitzke, P. (2018) Global Regulation by CsrA and Its RNA Antagonists. Microbiol. Spectr., 6. – reference: Isenberg, H. D. and Sundheim, L. H. (1958) Indole reactions in bacteria. J. Bacteriol., 75, 682–690. – reference: Nikaido, E., Yamaguchi, A., and Nishino, K. (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J. Biol. Chem., 283, 24245–24253. – reference: Zacharia, A., Pal, R. R., Katsowich, N., Mannully, C. T., Ibrahim, A., Alfandary, S., Serruya, R., Baidya, A. K., Ben-Yehuda, S., Rosenshine, I., and Moussaieff, A. (2022) Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems, 7, e0020222. – reference: Lenz, D. H., Miller, M. B., Zhu, J., Kulkarni, R. V., and Bassler, B. L. (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol., 58, 1186–1202. – reference: Gabriel, S. and Gadebusch, H. H. (1956) Modified stable Kovacs' reagent for the detection of indol. Am. J. Clin. Pathol., 26, 1373–1375. – reference: Pourciau, C., Pannuri, A., Potts, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2019) Regulation of Iron Storage by CsrA Supports Exponential Growth of Escherichia coli. mBio, 10, e01034-19. – reference: Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103–119. – reference: Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA., 97, 6640–6645. – reference: Lee, H. H., Molla, M. N., Cantor, C. R., and Collins, J. J. (2010) Bacterial charity work leads to population-wide resistance. Nature, 467, 82–85. – reference: Dugar, G., Svensson, S. L., Bischler, T., Wäldchen, S., Reinhardt, R., Sauer, M., and Sharma, C. M. (2016) The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nature Ccommun., 7, 11667. – reference: Snell E. E. (1975) Tryptophanase: structure, catalytic activities, and mechanism of action. Adv. Enzymol. Relat. Areas. Mol. Biol., 42, 287–333. – reference: Jiang, J., Wu, S., Wang, J., and Feng, Y. (2015) AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic. Microb., 55, 607–616. – reference: Zheng, J., Liu, Q., Xia, Y., Bai, L., and Feng, Y. (2019a) Pantoea agglomerans YS19 poly(A) polymerase I gene possesses the indole-sensing sequence in the promoter region. FEMS Microbiol. Lett., 366, fnz166. – reference: Zheng, J., Yu, J., Jia, M., Zheng, L., and Feng, Y. (2017) Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. J. Basic Microbiol., 57, 633–639. – reference: Cherepanov, P. P. and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158, 9–14. – reference: Flores, N., Xiao, J., Berry, A., Bolivar, F., and Valle, F. (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol., 14, 620–623. – reference: Fortune, D. R., Suyemoto, M., and Altier, C. (2006) Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect. Immun., 74, 331–339. – reference: Jonas, K., Edwards, A. N., Simm, R., Romeo, T., Römling, U., and Melefors, O. (2008) The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol. Microbiol., 70, 236–257. – reference: Henrichsen, J. (1972) Bacterial surface translocation: a survey and a classification. Bacteriol. Rev., 36, 478–503. – reference: Sabnis, N. A., Yang, H., and Romeo, T. (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J. Biol. Chem., 270, 29096–29104. – reference: Fink, R. C., Black, E. P., Hou, Z., Sugawara, M., Sadowsky, M. J., and Diez-Gonzalez, F. (2012) Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl. Environ. Microb., 78, 1752–1764. – reference: Lee, J., Attila, C., Cirillo, S. L., Cirillo, J. D., and Wood, T. K. (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotech., 2, 75–90. – reference: Liu, L., Duan, X., and Wu, J. (2016) L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway. PloS ONE, 11, e0158200. – reference: Potts, A. H., Vakulskas, C. A., Pannuri, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2017) Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nature Commun., 8, 1596. – reference: Tomberlin, J. K., Crippen, T. L., Wu, G., Griffin, A. S., Wood, T. K., and Kilner, R. M. (2017) Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays, 39. – reference: Xi, C., Lambrecht, M., Vanderleyden, J., and Michiels, J. (1999) Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J. Microbiol. Methods., 35, 85–92. – reference: Yu, M. and Zhao, Y. (2023) The posttranscriptional regulator CsrA affects multidrug resistance and biocontrol activity in Lysobacter enzymogenes. J. Appl. Microbiol., 134, lxad045. – reference: Klauck, E., Typas, A., and Hengge, R. (2007) The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci. Prog., 90, 103–127. – reference: Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Prüss, B. M., Babitzke, P., and Romeo, T. (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol., 40, 245–256. – ident: 18 doi: 10.1007/s12275-015-5273-3 – ident: 25 doi: 10.1371/journal.pone.0158200 – ident: 35 – ident: 7 doi: 10.1038/ncomms11667 – ident: 12 doi: 10.1093/ajcp/26.11_ts.1373 – ident: 41 doi: 10.1111/j.1365-2958.2007.05765.x – ident: 15 doi: 10.1128/jb.75.6.682-690.1958 – ident: 33 doi: 10.1074/jbc.270.49.29096 – ident: 17 doi: 10.1111/j.1365-2958.2008.06411.x – ident: 44 doi: 10.1128/msystems.00202-22 – ident: 31 doi: 10.1128/microbiolspec.RWR-0009-2017 – ident: 24 doi: 10.1111/j.1365-2958.2005.04902.x – ident: 1 doi: 10.1038/msb4100050 – ident: 46 doi: 10.2323/jgam.2018.03.002 – ident: 47 doi: 10.1002/jobm.201700027 – ident: 8 doi: 10.1186/1471-2180-12-233 – ident: 19 doi: 10.3184/003685007X215922 – ident: 27 doi: 10.1128/mBio.00533-19 – ident: 2 doi: 10.1046/j.1365-2958.2002.02982.x – ident: 32 doi: 10.1128/jb.175.15.4744-4755.1993 – ident: 45 doi: 10.1093/femsle/fnz166 – ident: 3 doi: 10.1006/mben.2001.0196 – ident: 26 doi: 10.1074/jbc.M804544200 – ident: 29 doi: 10.1128/mBio.01034-19 – ident: 6 doi: 10.1073/pnas.120163297 – ident: 4 doi: 10.1128/mBio.01042-19 – ident: 23 doi: 10.1111/j.1574-6976.2009.00204.x – ident: 13 doi: 10.1128/msystems.01043-22 – ident: 16 doi: 10.1002/jobm.201400472 – ident: 43 doi: 10.1093/jambio/lxad045 – ident: 36 doi: 10.1002/9780470122877.ch6 – ident: 5 doi: 10.1016/0378-1119(95)00193-A – ident: 21 doi: 10.1038/nature09354 – ident: 20 doi: 10.1016/0378-1119(95)00584-1 – ident: 10 doi: 10.1038/nbt0596-620 – ident: 28 doi: 10.1038/s41467-017-01613-1 – ident: 37 doi: 10.1080/21505594.2022.2073023 – ident: 42 doi: 10.1016/0378-1119(85)90120-9 – ident: 11 doi: 10.1128/IAI.74.1.331-339.2006 – ident: 34 doi: 10.1038/ismej.2017.23 – ident: 14 doi: 10.1128/br.36.4.478-503.1972 – ident: 9 doi: 10.1128/AEM.07454-11 – ident: 30 doi: 10.1105/tpc.7.7.921 – ident: 40 doi: 10.1016/S0167-7012(98)00103-1 – ident: 22 doi: 10.1111/j.1751-7915.2008.00061.x – ident: 38 doi: 10.1002/bies.201600203 – ident: 39 doi: 10.1046/j.1365-2958.2001.02380.x |
SSID | ssj0036284 |
Score | 2.300841 |
Snippet | Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now,... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 239 |
SubjectTerms | csrA E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene expression Gene Expression Regulation, Bacterial Glycogen Glycogens Indole Indoles Indoles - pharmacology Regulation Repressor Proteins - genetics Repressor Proteins - metabolism RNA-Binding Proteins - chemistry RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism |
Title | Indole inhibited the expression of csrA gene in Escherichia coli |
URI | https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.06.007/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37423745 https://www.proquest.com/docview/3054725737 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of General and Applied Microbiology, 2023, Vol.69(5), pp.239-248 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9nVfBF_Pa0Sh58kWPrfiXZPGmRalVaFFro27LJZq9bcK_0bqHtX-9Mkv3o4YH1JRwhN7ub-SUzSSa_IeRdmRZZyhgPhFIhkmoXgSoZKCQqY6VLUUQKLycfHPL94_T7CTuZTK7Ht0tWakdf__Veyf9oFepAr3hL9haa7YVCBfwG_UIJGobyn3T8rUE-plndnNbKuo42QuPSx7ZaR1AvL3YxTbLlBtlboopqDG-eAQDqDZ7p3FFROx5X76X-rgfGpmGz2fh43s7-YWVrN1-_tmAk66HlorXHIKf1vF30uzo2ofAMxVzWxXj_IU5G-w_DfYAodlkBdoybRpNUgu1zdC7dPOtSsng8sfGk6eiMvP2NHfPm-tQOnh9STJzNC-QPiBPLuuoS5t5k0V6zbn3MIax2UEaOEnKUkNuIPnGH3I2FsEf8P371J1Bg17O0Y5rHr3NH3Cjhw_o73HBp7p2BVz83mxcs1nE5ekQeer3SXQefx2RimifkvstBevWUfHIgoj2IKICIDiCii4oiiCiiAlrREYgogugZOf6yd_R5P_BpNQIN3vgqkDGHNa40larCQoWR4cKUgjEhK1iLciVKEcaSs8rAUiCrYIjD4I0MUlqLSOsweU62mkVjXhIqyqyUvNIgLkl1yFUmSqV5JlMO0iM5Je-7nsnPHXtKvkkPU_LRdV3f0o8r15LLnGEx-kffAC8ownwwJdtdn-d-lC5zsGepALuUwANeOD30D0gwTEGk7NUtXvM1eTCMgm2ytbpozRvwS1fqrQUQlIc_D_4AnQSMYQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indole+inhibited+the+expression+of+csrA+gene+in+Escherichia+coli&rft.jtitle=Journal+of+general+and+applied+microbiology&rft.au=Zheng%2C+Jing&rft.au=Zuo%2C+Guocai&rft.au=Zhou%2C+Zhiguo&rft.au=Shi%2C+Zhenxia&rft.date=2023-01-01&rft.issn=0022-1260&rft.eissn=1349-8037&rft.volume=69&rft.issue=5&rft.spage=239&rft.epage=248&rft_id=info:doi/10.2323%2Fjgam.2023.06.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_2323_jgam_2023_06_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1260&client=summon |