Indole inhibited the expression of csrA gene in Escherichia coli

Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycoge...

Full description

Saved in:
Bibliographic Details
Published inJournal of general and applied microbiology Vol. 69; no. 5; pp. 239 - 248
Main Authors Zuo, Guocai, Shi, Zhenxia, Guo, Huiying, Sun, Zemin, Zheng, Jing, Feng, Yongjun, Zhou, Zhiguo
Format Journal Article
LanguageEnglish
Published Japan Applied Microbiology, Molecular and Cellular Biosciences Research Foundation 01.01.2023
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0022-1260
1349-8037
DOI10.2323/jgam.2023.06.007

Cover

Abstract Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.
AbstractList Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.
ArticleNumber 2023.06.007
Author Guo, Huiying
Shi, Zhenxia
Zheng, Jing
Zuo, Guocai
Zhou, Zhiguo
Sun, Zemin
Feng, Yongjun
Author_xml – sequence: 1
  fullname: Zuo, Guocai
  organization: School of Life Science, Langfang Normal University
– sequence: 1
  fullname: Shi, Zhenxia
  organization: School of Life Science, Langfang Normal University
– sequence: 1
  fullname: Guo, Huiying
  organization: School of Life Science, Langfang Normal University
– sequence: 1
  fullname: Sun, Zemin
  organization: School of Life Science, Beijing Institute of Technology
– sequence: 1
  fullname: Zheng, Jing
  organization: School of Life Science, Langfang Normal University
– sequence: 1
  fullname: Feng, Yongjun
  organization: School of Life Science, Beijing Institute of Technology
– sequence: 1
  fullname: Zhou, Zhiguo
  organization: School of Life Science, Langfang Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37423745$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1PwzAMhiM0xD7gzglV4tzhJk3S3pimDSZN4gLnKE3dNVXXjqST4N_TqjBxsH15Hlt-52TStA0Sch_BkjLKnqqDPi4pULYEsQSQV2QWsTgNE2ByQmYAlIYRFTAlc-8rACZoEt-QKZMx7YvPyPOuydsaA9uUNrMd5kFXYoBfJ4fe27YJ2iIw3q2CAzYDFWy8KdFZU1odmLa2t-S60LXHu9-5IB_bzfv6Ndy_vezWq31oOCRdmFKRCpFikRWgM4hQSMwl5zItYpqITOYSaCp4gZyxpDBG5zyJEEQKMjIG2II8jntPrv08o-9U1Z5d059UDHgsKZdM9tTDL3XOjpirk7NH7b7V38M9ACNgXOu9w-KCRKCGTNWQqRoyVSBUn2mvbEel8p0-4EXQrrOmxlEQqeJD-ydeAFNqp7BhPxUwgJA
Cites_doi 10.1007/s12275-015-5273-3
10.1371/journal.pone.0158200
10.1038/ncomms11667
10.1093/ajcp/26.11_ts.1373
10.1111/j.1365-2958.2007.05765.x
10.1128/jb.75.6.682-690.1958
10.1074/jbc.270.49.29096
10.1111/j.1365-2958.2008.06411.x
10.1128/msystems.00202-22
10.1128/microbiolspec.RWR-0009-2017
10.1111/j.1365-2958.2005.04902.x
10.1038/msb4100050
10.2323/jgam.2018.03.002
10.1002/jobm.201700027
10.1186/1471-2180-12-233
10.3184/003685007X215922
10.1128/mBio.00533-19
10.1046/j.1365-2958.2002.02982.x
10.1128/jb.175.15.4744-4755.1993
10.1093/femsle/fnz166
10.1006/mben.2001.0196
10.1074/jbc.M804544200
10.1128/mBio.01034-19
10.1073/pnas.120163297
10.1128/mBio.01042-19
10.1111/j.1574-6976.2009.00204.x
10.1128/msystems.01043-22
10.1002/jobm.201400472
10.1093/jambio/lxad045
10.1002/9780470122877.ch6
10.1016/0378-1119(95)00193-A
10.1038/nature09354
10.1016/0378-1119(95)00584-1
10.1038/nbt0596-620
10.1038/s41467-017-01613-1
10.1080/21505594.2022.2073023
10.1016/0378-1119(85)90120-9
10.1128/IAI.74.1.331-339.2006
10.1038/ismej.2017.23
10.1128/br.36.4.478-503.1972
10.1128/AEM.07454-11
10.1105/tpc.7.7.921
10.1016/S0167-7012(98)00103-1
10.1111/j.1751-7915.2008.00061.x
10.1002/bies.201600203
10.1046/j.1365-2958.2001.02380.x
ContentType Journal Article
Copyright 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Copyright Japan Science and Technology Agency 2023
Copyright_xml – notice: 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
– notice: Copyright Japan Science and Technology Agency 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
DOI 10.2323/jgam.2023.06.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1349-8037
EndPage 248
ExternalDocumentID 37423745
10_2323_jgam_2023_06_007
article_jgam_69_5_69_2023_06_007_article_char_en
Genre Journal Article
GroupedDBID ---
-~X
.GJ
123
2WC
53G
ACPRK
ADBBV
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
EBS
EJD
F5P
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TKC
TR2
VH1
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c508t-9269669efbf0ab01e67ed75579f4286b7d702965fe5338fccad581e069071cc03
ISSN 0022-1260
IngestDate Mon Jun 30 09:57:23 EDT 2025
Wed Feb 19 02:06:25 EST 2025
Tue Jul 01 02:29:57 EDT 2025
Wed Sep 03 06:31:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords csrA
Regulation
Escherichia coli
Indole
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-9269669efbf0ab01e67ed75579f4286b7d702965fe5338fccad581e069071cc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.06.007/_article/-char/en
PMID 37423745
PQID 3054725737
PQPubID 2029108
PageCount 10
ParticipantIDs proquest_journals_3054725737
pubmed_primary_37423745
crossref_primary_10_2323_jgam_2023_06_007
jstage_primary_article_jgam_69_5_69_2023_06_007_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of general and applied microbiology
PublicationTitleAlternate J. Gen. Appl. Microbiol.
PublicationYear 2023
Publisher Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Japan Science and Technology Agency
Publisher_xml – name: Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
– name: Japan Science and Technology Agency
References Lee, H. H., Molla, M. N., Cantor, C. R., and Collins, J. J. (2010) Bacterial charity work leads to population-wide resistance. Nature, 467, 82–85.
Lee, J., Attila, C., Cirillo, S. L., Cirillo, J. D., and Wood, T. K. (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotech., 2, 75–90.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning, New York: Cold Spring Harbor Laboratory Press.
Oshiro, R. T., Rajendren, S., Hundley, H. A., and Kearns, D. B. (2019) Robust Stoichiometry of FliW-CsrA Governs Flagellin Homeostasis and Cytoplasmic Organization in Bacillus subtilis. mBio, 10, e00533-19.
Sabnis, N. A., Yang, H., and Romeo, T. (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J. Biol. Chem., 270, 29096–29104.
Tomberlin, J. K., Crippen, T. L., Wu, G., Griffin, A. S., Wood, T. K., and Kilner, R. M. (2017) Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays, 39.
Yu, M. and Zhao, Y. (2023) The posttranscriptional regulator CsrA affects multidrug resistance and biocontrol activity in Lysobacter enzymogenes. J. Appl. Microbiol., 134, lxad045.
Klauck, E., Typas, A., and Hengge, R. (2007) The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci. Prog., 90, 103–127.
Nikaido, E., Yamaguchi, A., and Nishino, K. (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J. Biol. Chem., 283, 24245–24253.
Zheng, J., Yu, J., Jia, M., Zheng, L., and Feng, Y. (2017) Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. J. Basic Microbiol., 57, 633–639.
Xi, C., Lambrecht, M., Vanderleyden, J., and Michiels, J. (1999) Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J. Microbiol. Methods., 35, 85–92.
Lee, J. H. and Lee, J. (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 34, 426–444.
Zheng, J., Xia, Y., Liu, Q., He, X., Yu, J., and Feng, Y. (2019b) Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol., 65, 11–17.
Cherepanov, P. P. and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158, 9–14.
Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA., 97, 6640–6645.
Gabriel, S. and Gadebusch, H. H. (1956) Modified stable Kovacs' reagent for the detection of indol. Am. J. Clin. Pathol., 26, 1373–1375.
Henrichsen, J. (1972) Bacterial surface translocation: a survey and a classification. Bacteriol. Rev., 36, 478–503.
Flores, N., Xiao, J., Berry, A., Bolivar, F., and Valle, F. (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol., 14, 620–623.
Sun, Z., Zhou, N., Zhang, W., Xu, Y., and Yao, Y. F. (2022) Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence, 13, 859–874.
Gratani, F. L., Englert, T., Nashier, P., Sass, P., Czech, L., Neumann, N., Doello, S., Mann, P., Blobelt, R., Alberti, S., Forchhammer, K., Bange, G., Höfer, K., and Macek, B. (2023) E. coli Toxin YjjJ (HipH) Is a Ser/Thr Protein Kinase That Impacts Cell Division, Carbon Metabolism, and Ribosome Assembly. mSystems, 8, e0104322.
Snell E. E. (1975) Tryptophanase: structure, catalytic activities, and mechanism of action. Adv. Enzymol. Relat. Areas. Mol. Biol., 42, 287–333.
Lenz, D. H., Miller, M. B., Zhu, J., Kulkarni, R. V., and Bassler, B. L. (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol., 58, 1186–1202.
Jiang, J., Wu, S., Wang, J., and Feng, Y. (2015) AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic. Microb., 55, 607–616.
Isenberg, H. D. and Sundheim, L. H. (1958) Indole reactions in bacteria. J. Bacteriol., 75, 682–690.
Pourciau, C., Pannuri, A., Potts, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2019) Regulation of Iron Storage by CsrA Supports Exponential Growth of Escherichia coli. mBio, 10, e01034-19.
Radwanski, E. R. and Last, R. L. (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell, 7, 921–934.
Kim, J. and Park, W. (2015) Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J. Microbiol. (Seoul, Korea), 53, 421–428.
Fortune, D. R., Suyemoto, M., and Altier, C. (2006) Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect. Immun., 74, 331–339.
Zheng, J., Liu, Q., Xia, Y., Bai, L., and Feng, Y. (2019a) Pantoea agglomerans YS19 poly(A) polymerase I gene possesses the indole-sensing sequence in the promoter region. FEMS Microbiol. Lett., 366, fnz166.
Dugar, G., Svensson, S. L., Bischler, T., Wäldchen, S., Reinhardt, R., Sauer, M., and Sharma, C. M. (2016) The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nature Ccommun., 7, 11667.
Fields, J. A. and Thompson, S. A. (2012) Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation. BMC Microbiol., 12, 233.
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd, and Peterson, K. M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–176.
Potts, A. H., Vakulskas, C. A., Pannuri, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2017) Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nature Commun., 8, 1596.
Bongaerts, J., Krämer, M., Müller, U., Raeven, L., and Wubbolts, M. (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng., 3, 289–300.
Romeo, T. and Babitzke, P. (2018) Global Regulation by CsrA and Its RNA Antagonists. Microbiol. Spectr., 6.
Samad, T., Billings, N., Birjiniuk, A., Crouzier, T., Doyle, P. S., and Ribbeck, K. (2017) Swimming bacteria promote dispersal of non-motile staphylococcal species. ISME J., 11, 1933–1937.
Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Prüss, B. M., Babitzke, P., and Romeo, T. (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol., 40, 245–256.
Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103–119.
Yakhnin, H., Pandit, P., Petty, T. J., Baker, C. S., Romeo, T., and Babitzke, P. (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol. Microbiol., 64, 1605–1620.
Jonas, K., Edwards, A. N., Simm, R., Romeo, T., Römling, U., and Melefors, O. (2008) The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol. Microbiol., 70, 236–257.
Zacharia, A., Pal, R. R., Katsowich, N., Mannully, C. T., Ibrahim, A., Alfandary, S., Serruya, R., Baidya, A. K., Ben-Yehuda, S., Rosenshine, I., and Moussaieff, A. (2022) Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems, 7, e0020222.
Butz, H. A., Mey, A. R., Ciosek, A. L., and Payne, S. M. (2019) Vibrio cholerae CsrA Directly Regulates varA To Increase Expression of the Three Nonredundant Csr Small RNAs. mBio, 10, e01042-19.
Baker, C. S., Morozov, I., Suzuki, K., Romeo, T., and Babitzke, P. (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol. Microbiol., 44, 1599–1610.
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol., 2, 2006.0008.
Romeo, T., Gong, M., Liu, M. Y., and Brun-Zinkernagel, A. M. (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol., 175, 4744–4755.
Liu, L., Duan, X., and Wu, J. (2016) L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway. PloS ONE, 11, e0158200.
Fink, R. C., Black, E. P., Hou, Z., Sugawara, M., Sadowsky, M. J., and Diez-Gonzalez, F. (2012) Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl. Environ. Microb., 78, 1752–1764.
22
44
23
45
24
46
25
47
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: Fields, J. A. and Thompson, S. A. (2012) Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation. BMC Microbiol., 12, 233.
– reference: Kim, J. and Park, W. (2015) Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J. Microbiol. (Seoul, Korea), 53, 421–428.
– reference: Baker, C. S., Morozov, I., Suzuki, K., Romeo, T., and Babitzke, P. (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol. Microbiol., 44, 1599–1610.
– reference: Zheng, J., Xia, Y., Liu, Q., He, X., Yu, J., and Feng, Y. (2019b) Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol., 65, 11–17.
– reference: Oshiro, R. T., Rajendren, S., Hundley, H. A., and Kearns, D. B. (2019) Robust Stoichiometry of FliW-CsrA Governs Flagellin Homeostasis and Cytoplasmic Organization in Bacillus subtilis. mBio, 10, e00533-19.
– reference: Radwanski, E. R. and Last, R. L. (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell, 7, 921–934.
– reference: Gratani, F. L., Englert, T., Nashier, P., Sass, P., Czech, L., Neumann, N., Doello, S., Mann, P., Blobelt, R., Alberti, S., Forchhammer, K., Bange, G., Höfer, K., and Macek, B. (2023) E. coli Toxin YjjJ (HipH) Is a Ser/Thr Protein Kinase That Impacts Cell Division, Carbon Metabolism, and Ribosome Assembly. mSystems, 8, e0104322.
– reference: Sun, Z., Zhou, N., Zhang, W., Xu, Y., and Yao, Y. F. (2022) Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence, 13, 859–874.
– reference: Yakhnin, H., Pandit, P., Petty, T. J., Baker, C. S., Romeo, T., and Babitzke, P. (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol. Microbiol., 64, 1605–1620.
– reference: Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd, and Peterson, K. M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–176.
– reference: Samad, T., Billings, N., Birjiniuk, A., Crouzier, T., Doyle, P. S., and Ribbeck, K. (2017) Swimming bacteria promote dispersal of non-motile staphylococcal species. ISME J., 11, 1933–1937.
– reference: Bongaerts, J., Krämer, M., Müller, U., Raeven, L., and Wubbolts, M. (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng., 3, 289–300.
– reference: Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol., 2, 2006.0008.
– reference: Lee, J. H. and Lee, J. (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 34, 426–444.
– reference: Romeo, T., Gong, M., Liu, M. Y., and Brun-Zinkernagel, A. M. (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol., 175, 4744–4755.
– reference: Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning, New York: Cold Spring Harbor Laboratory Press.
– reference: Butz, H. A., Mey, A. R., Ciosek, A. L., and Payne, S. M. (2019) Vibrio cholerae CsrA Directly Regulates varA To Increase Expression of the Three Nonredundant Csr Small RNAs. mBio, 10, e01042-19.
– reference: Romeo, T. and Babitzke, P. (2018) Global Regulation by CsrA and Its RNA Antagonists. Microbiol. Spectr., 6.
– reference: Isenberg, H. D. and Sundheim, L. H. (1958) Indole reactions in bacteria. J. Bacteriol., 75, 682–690.
– reference: Nikaido, E., Yamaguchi, A., and Nishino, K. (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J. Biol. Chem., 283, 24245–24253.
– reference: Zacharia, A., Pal, R. R., Katsowich, N., Mannully, C. T., Ibrahim, A., Alfandary, S., Serruya, R., Baidya, A. K., Ben-Yehuda, S., Rosenshine, I., and Moussaieff, A. (2022) Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems, 7, e0020222.
– reference: Lenz, D. H., Miller, M. B., Zhu, J., Kulkarni, R. V., and Bassler, B. L. (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol., 58, 1186–1202.
– reference: Gabriel, S. and Gadebusch, H. H. (1956) Modified stable Kovacs' reagent for the detection of indol. Am. J. Clin. Pathol., 26, 1373–1375.
– reference: Pourciau, C., Pannuri, A., Potts, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2019) Regulation of Iron Storage by CsrA Supports Exponential Growth of Escherichia coli. mBio, 10, e01034-19.
– reference: Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103–119.
– reference: Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA., 97, 6640–6645.
– reference: Lee, H. H., Molla, M. N., Cantor, C. R., and Collins, J. J. (2010) Bacterial charity work leads to population-wide resistance. Nature, 467, 82–85.
– reference: Dugar, G., Svensson, S. L., Bischler, T., Wäldchen, S., Reinhardt, R., Sauer, M., and Sharma, C. M. (2016) The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nature Ccommun., 7, 11667.
– reference: Snell E. E. (1975) Tryptophanase: structure, catalytic activities, and mechanism of action. Adv. Enzymol. Relat. Areas. Mol. Biol., 42, 287–333.
– reference: Jiang, J., Wu, S., Wang, J., and Feng, Y. (2015) AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic. Microb., 55, 607–616.
– reference: Zheng, J., Liu, Q., Xia, Y., Bai, L., and Feng, Y. (2019a) Pantoea agglomerans YS19 poly(A) polymerase I gene possesses the indole-sensing sequence in the promoter region. FEMS Microbiol. Lett., 366, fnz166.
– reference: Zheng, J., Yu, J., Jia, M., Zheng, L., and Feng, Y. (2017) Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. J. Basic Microbiol., 57, 633–639.
– reference: Cherepanov, P. P. and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158, 9–14.
– reference: Flores, N., Xiao, J., Berry, A., Bolivar, F., and Valle, F. (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol., 14, 620–623.
– reference: Fortune, D. R., Suyemoto, M., and Altier, C. (2006) Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect. Immun., 74, 331–339.
– reference: Jonas, K., Edwards, A. N., Simm, R., Romeo, T., Römling, U., and Melefors, O. (2008) The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol. Microbiol., 70, 236–257.
– reference: Henrichsen, J. (1972) Bacterial surface translocation: a survey and a classification. Bacteriol. Rev., 36, 478–503.
– reference: Sabnis, N. A., Yang, H., and Romeo, T. (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J. Biol. Chem., 270, 29096–29104.
– reference: Fink, R. C., Black, E. P., Hou, Z., Sugawara, M., Sadowsky, M. J., and Diez-Gonzalez, F. (2012) Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl. Environ. Microb., 78, 1752–1764.
– reference: Lee, J., Attila, C., Cirillo, S. L., Cirillo, J. D., and Wood, T. K. (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotech., 2, 75–90.
– reference: Liu, L., Duan, X., and Wu, J. (2016) L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway. PloS ONE, 11, e0158200.
– reference: Potts, A. H., Vakulskas, C. A., Pannuri, A., Yakhnin, H., Babitzke, P., and Romeo, T. (2017) Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nature Commun., 8, 1596.
– reference: Tomberlin, J. K., Crippen, T. L., Wu, G., Griffin, A. S., Wood, T. K., and Kilner, R. M. (2017) Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays, 39.
– reference: Xi, C., Lambrecht, M., Vanderleyden, J., and Michiels, J. (1999) Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J. Microbiol. Methods., 35, 85–92.
– reference: Yu, M. and Zhao, Y. (2023) The posttranscriptional regulator CsrA affects multidrug resistance and biocontrol activity in Lysobacter enzymogenes. J. Appl. Microbiol., 134, lxad045.
– reference: Klauck, E., Typas, A., and Hengge, R. (2007) The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci. Prog., 90, 103–127.
– reference: Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Prüss, B. M., Babitzke, P., and Romeo, T. (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol., 40, 245–256.
– ident: 18
  doi: 10.1007/s12275-015-5273-3
– ident: 25
  doi: 10.1371/journal.pone.0158200
– ident: 35
– ident: 7
  doi: 10.1038/ncomms11667
– ident: 12
  doi: 10.1093/ajcp/26.11_ts.1373
– ident: 41
  doi: 10.1111/j.1365-2958.2007.05765.x
– ident: 15
  doi: 10.1128/jb.75.6.682-690.1958
– ident: 33
  doi: 10.1074/jbc.270.49.29096
– ident: 17
  doi: 10.1111/j.1365-2958.2008.06411.x
– ident: 44
  doi: 10.1128/msystems.00202-22
– ident: 31
  doi: 10.1128/microbiolspec.RWR-0009-2017
– ident: 24
  doi: 10.1111/j.1365-2958.2005.04902.x
– ident: 1
  doi: 10.1038/msb4100050
– ident: 46
  doi: 10.2323/jgam.2018.03.002
– ident: 47
  doi: 10.1002/jobm.201700027
– ident: 8
  doi: 10.1186/1471-2180-12-233
– ident: 19
  doi: 10.3184/003685007X215922
– ident: 27
  doi: 10.1128/mBio.00533-19
– ident: 2
  doi: 10.1046/j.1365-2958.2002.02982.x
– ident: 32
  doi: 10.1128/jb.175.15.4744-4755.1993
– ident: 45
  doi: 10.1093/femsle/fnz166
– ident: 3
  doi: 10.1006/mben.2001.0196
– ident: 26
  doi: 10.1074/jbc.M804544200
– ident: 29
  doi: 10.1128/mBio.01034-19
– ident: 6
  doi: 10.1073/pnas.120163297
– ident: 4
  doi: 10.1128/mBio.01042-19
– ident: 23
  doi: 10.1111/j.1574-6976.2009.00204.x
– ident: 13
  doi: 10.1128/msystems.01043-22
– ident: 16
  doi: 10.1002/jobm.201400472
– ident: 43
  doi: 10.1093/jambio/lxad045
– ident: 36
  doi: 10.1002/9780470122877.ch6
– ident: 5
  doi: 10.1016/0378-1119(95)00193-A
– ident: 21
  doi: 10.1038/nature09354
– ident: 20
  doi: 10.1016/0378-1119(95)00584-1
– ident: 10
  doi: 10.1038/nbt0596-620
– ident: 28
  doi: 10.1038/s41467-017-01613-1
– ident: 37
  doi: 10.1080/21505594.2022.2073023
– ident: 42
  doi: 10.1016/0378-1119(85)90120-9
– ident: 11
  doi: 10.1128/IAI.74.1.331-339.2006
– ident: 34
  doi: 10.1038/ismej.2017.23
– ident: 14
  doi: 10.1128/br.36.4.478-503.1972
– ident: 9
  doi: 10.1128/AEM.07454-11
– ident: 30
  doi: 10.1105/tpc.7.7.921
– ident: 40
  doi: 10.1016/S0167-7012(98)00103-1
– ident: 22
  doi: 10.1111/j.1751-7915.2008.00061.x
– ident: 38
  doi: 10.1002/bies.201600203
– ident: 39
  doi: 10.1046/j.1365-2958.2001.02380.x
SSID ssj0036284
Score 2.300841
Snippet Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now,...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 239
SubjectTerms csrA
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene expression
Gene Expression Regulation, Bacterial
Glycogen
Glycogens
Indole
Indoles
Indoles - pharmacology
Regulation
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Title Indole inhibited the expression of csrA gene in Escherichia coli
URI https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.06.007/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37423745
https://www.proquest.com/docview/3054725737
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of General and Applied Microbiology, 2023, Vol.69(5), pp.239-248
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9nVfBF_Pa0Sh58kWPrfiXZPGmRalVaFFro27LJZq9bcK_0bqHtX-9Mkv3o4YH1JRwhN7ub-SUzSSa_IeRdmRZZyhgPhFIhkmoXgSoZKCQqY6VLUUQKLycfHPL94_T7CTuZTK7Ht0tWakdf__Veyf9oFepAr3hL9haa7YVCBfwG_UIJGobyn3T8rUE-plndnNbKuo42QuPSx7ZaR1AvL3YxTbLlBtlboopqDG-eAQDqDZ7p3FFROx5X76X-rgfGpmGz2fh43s7-YWVrN1-_tmAk66HlorXHIKf1vF30uzo2ofAMxVzWxXj_IU5G-w_DfYAodlkBdoybRpNUgu1zdC7dPOtSsng8sfGk6eiMvP2NHfPm-tQOnh9STJzNC-QPiBPLuuoS5t5k0V6zbn3MIax2UEaOEnKUkNuIPnGH3I2FsEf8P371J1Bg17O0Y5rHr3NH3Cjhw_o73HBp7p2BVz83mxcs1nE5ekQeer3SXQefx2RimifkvstBevWUfHIgoj2IKICIDiCii4oiiCiiAlrREYgogugZOf6yd_R5P_BpNQIN3vgqkDGHNa40larCQoWR4cKUgjEhK1iLciVKEcaSs8rAUiCrYIjD4I0MUlqLSOsweU62mkVjXhIqyqyUvNIgLkl1yFUmSqV5JlMO0iM5Je-7nsnPHXtKvkkPU_LRdV3f0o8r15LLnGEx-kffAC8ownwwJdtdn-d-lC5zsGepALuUwANeOD30D0gwTEGk7NUtXvM1eTCMgm2ytbpozRvwS1fqrQUQlIc_D_4AnQSMYQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indole+inhibited+the+expression+of+csrA+gene+in+Escherichia+coli&rft.jtitle=Journal+of+general+and+applied+microbiology&rft.au=Zheng%2C+Jing&rft.au=Zuo%2C+Guocai&rft.au=Zhou%2C+Zhiguo&rft.au=Shi%2C+Zhenxia&rft.date=2023-01-01&rft.issn=0022-1260&rft.eissn=1349-8037&rft.volume=69&rft.issue=5&rft.spage=239&rft.epage=248&rft_id=info:doi/10.2323%2Fjgam.2023.06.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_2323_jgam_2023_06_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1260&client=summon