Global Existence and Fixed-Time Synchronization of a Hyperchaotic Financial System Governed by Semi-Linear Parabolic Partial Differential Equations Equipped with the Homogeneous Neumann Boundary Condition

Chaotic nonlinear dynamical systems, in which the generated time series exhibit high entropy values, have been extensively used and play essential roles in tracking accurately the complex fluctuations of the real-world financial markets. We are concerned with a system of semi-linear parabolic partia...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 25; no. 2; p. 359
Main Authors Wang, Chengqiang, Zhao, Xiangqing, Zhang, Yulin, Lv, Zhiwei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chaotic nonlinear dynamical systems, in which the generated time series exhibit high entropy values, have been extensively used and play essential roles in tracking accurately the complex fluctuations of the real-world financial markets. We are concerned with a system of semi-linear parabolic partial differential equations supplemented by the homogeneous Neumann boundary condition, which governs a financial system comprising the labor force, the stock, the money, and the production sub-blocks distributed in a certain line segment or planar region. The system derived by removing the terms involved with partial derivatives with respect to space variables from our concerned system was demonstrated to be hyperchaotic. We firstly prove, via Galerkin's method and establishing a priori inequalities, that the initial-boundary value problem for the concerned partial differential equations is globally well posed in Hadamard's sense. Secondly, we design controls for the response system to our concerned financial system, prove under some additional conditions that our concerned system and its controlled response system achieve drive-response fixed-time synchronization, and provide an estimate on the settling time. Several modified energy functionals (i.e., Lyapunov functionals) are constructed to demonstrate the global well-posedness and the fixed-time synchronizability. Finally, we perform several numerical simulations to validate our synchronization theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e25020359